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Abstract

In recent years, powerful theoretical techniques have been developed for
supporting communication, synchronization and fault tolerance in general
purpose parallel computing. The proposition of this thesis is that different
techniques should be used to support different algorithms. The determining
factor is granularity, or the extent to which an algorithm uses long blocks
for communication between processors.

We consider the Block PRAM model of Aggarwal, Chandra and Snir, a
synchronous model of parallel computation in which the processors commu-
nicate by accessing a shared memory. In the Block PRAM model, there is a
" time cost for each access by a processor to a block of locations in the shared
memory. This feature of the model encourages the use of long blocks for
communication.

In the thesis we present Block PRAM algorithms and lower bounds for
specific problems on arrays, lists, expression trees, graphs, strings, binary
trees and butterflies. These results introduce useful basic techniques for
parallel computation in practice, and provide a classification of problems
and algorithms according to their granularity. Also presented are optimal
algorithms for universal hashing and skewing, which are techniques for sup-
porting conflict-free memory access in general- and special-purpose parallel
computations, respectively.

We explore the Block PRAM model as a theoretical basis for the design
of scalable general purpose parallel computers. Several simulation results
are presented which show the Block PRAM model to be comparable to, and
competitive with, other models that have been proposed for this role. Two
major advantages of machines based on the Block PRAM model is that they
are able to preserve the granularity properties of individual algorithms and
can efficiently incorporate a significant degree of fault tolerance.

The thesis also discusses methods for the design of algorithms that do
not use synchronization. We apply these methods to define fast circuits for
several fundamental Boolean functions.

Copyright ©1991 by D. Andrew Chin. All rights reserved.
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Chapter 1

Introduction

To a research scientist, no development can be more satisfying than the
union, at long last, between theory and practice. Real-world applications
can immediately demonstrate a theory’s practical value and empirical truth.
This thesis proclaims the union between the way we solve many problems
abstractly and the way we can—and should—solve them in practice.

1.1 Theory and practice

Eventually, our most powerful problem-solving machines will be parallel
computers.! In a parallel machine, many computations can take place si-
multaneously, saving time. Miniaturized hardware and mass production will
provide an irresistible economy of scale in favor of parallel computing. Al-
ready, parallel computers containing more than 65,000 processors have been
built and sold commercially, and we may expect even larger machines to
appear before very long.

Parallel complexity theory describes the difficulty of solving problems on
parallel computers. To date, most of this theory has focused on the Parallel
Random Access Machine (PRAM) model of computation. A PRAM consists
of a number of processors each with a local memory, together with a shared
memory. In unit time, each processor may execute a basic operation on data
in local memory, or it may read or write to a location in the shared memory.
(The PRAM is formally introduced in Chapter 2.)

!This may already be true: see [?].




It is widely agreed that the PRAM model has significant value in the
development of a theoretical basis for general purpose parallel computing.
We give some reasons for this.

e Fase of use: The existing body of PRAM research provides many im-
mediate applications and demonstrates the ease with which new algorithms
can be designed and specified. A popular, user-friendly model of computa-
tion is essential to stimulate the widespread development of parallel software.

e Portability: Real parallel computers, or multiprocessors, consist of pro-
cessors connected in a network. The topology, or architecture, of that net-
work is ignored in the description of a PRAM. Architecture independence
allows the performance of parallel computers to be discussed despite the
present lack of consensus about designing interprocessor networks. PRAM
algorithms do not need to take into account memory organization, network
topology or other hardware design attributes of real parallel computers. Ar-
chitecture independence is essential if parallel software is to be portable, or
broadly applicable, across a range of computer designs and technological
developments. See [135, 189] for a detailed discussion of these issues.

e Scalability: PRAM algorithms are designed to solve problems, which
can occur as problem instances of varying size. Typically the amount of
parallelism, the number of parallel processors which can be used to speed
up a PRAM algorithm, increases as the problem size increases. The power
of a PRAM to solve the problem quickly is then said to scale upwards with
the number of processors. A PRAM continues to match the computation
and communication behavior of the algorithm, time step for time step, even
when arbitrarily many processors are used. This ideal performance makes
the PRAM model a standard for evaluating the scalability of real parallel ar-
chitectures [149]. The design of scalable software, such as PRAM algorithms,
encourages the development of parallel machines with more processors, so
that bigger problems can be solved quickly.

For specific problems, theoretical computer scientists have designed al-
gorithms, or procedures for finding solutions, designed to run on the PRAM
model. They also have proved lower bounds, demonstrating that to solve
problems of a given size requires a minimum length of time and/or a mini-
mum number of processors. These results provide abstract solutions to prob-



lems and a means for evaluating them, thereby contributing to both com-
puter science and pure mathematics. (For a survey, see [11, 75, 104, 154].)
Until recently, however, unrealistic characteristics of the PRAM model have
limited the value of this research program.

e PRAM processors can read and write into locations of a shared memory
without requiring extra time, or communication latency, to transfer data
through an interconnection network.

e PRAM processors can have unrestricted patterns of access to a shared
memory without causing competition, or contention, for limited memory
resources, and without causing local accumulations of traffic, or congestion,
in an interconnection network.

e The operations on each PRAM processor are performed in unison, or
synchronously.

e PRAM processors compute and communicate without errors, or fail-
ures.

The PRAM is an ideal parallel complexity model. For the foreseeable
future, we will be unable to build a real parallel machine having any of these
qualities. Consequently we cannot expect the PRAM complexity results to
describe the performance of algorithms in practice.

1.2 Thesis

Needing to support an ideal model in the real world, we can treat the unreal-
istic characteristics of the PRAM in two complementary ways. In practical
work, we can design machines which simulate the ideal conditions required
by the PRAM model. In theoretical work, we can implement and simulate
PRAM algorithms on alternative architecture-independent parallel complex-
ity models which more accurately describe real machines.

By taking this theoretical route, this thesis enters an active discussion.
Since 1987, at least 10 “realistic” parallel comrplexity models have been
introduced, and many more variants of these models have been proposed.
Each model accounts for some difficulties in parallel computing but not
others, leaving open questions about the impact of unexamined factors.

The goal of this thesis is to bring unity and coherence to the discussion
of practical issues in parallel computation. We study a single architecture-



independent complexity model, the Block PRAM, which has very general
application to the major practical issues in parallel computation described
above. This approach enables us to exhibit a rich correspondence between
practical issues, complexity models and algorithmic structures in parallel
computation. Many issues are related quantitatively for the first time in the
complexity theory literature, and many optimal bounds are proved. The
final product is a fourfold prescription for parallel computation, described
in terms of the complexity of parallel algorithms.

e General simulation results show how PRAM algorithms can be imple-
mented efficiently in practice.

e Algorithms and lower bounds for specific problems indicate when it is
possible to improve upon the performance of the general simulation.

e Complexity tradeoffs between these general and specific approaches
~ lead to designs with which we can simultaneously achieve most of the benefits
of both approaches.

e Opportunities for improving performance and reliability identify im-
portant primitive operations which should be supported in hardware or low-
level software.

A further important (if esoteric) achievement of this thesis is the reha-
bilitation of the Block PRAM as a theoretical model of parallel complexity.
Since its first appearance in [5], the Block PRAM model has been essentially
abandoned by the research community, despite the rapidly growing interest

in “practical” and “realistic” PRAM models. We identify the model’s fail-

ure to account for network congestion as a key reason for its premature
demise. We then address this problem by showing that to a great extent,
the effect of network congestion on the Block PRAM model can be either
minimized (probabilistically) or modeled (deterministically). Moreover, we
demonstrate advantages to using the Block PRAM model as a basis for gen-
eral purpose parallel computation. Based on the results in this thesis, we
are able to conclude that algorithms designed for the Block PRAM model
will have a significant impact on the design of portable and scalable software
for general purpose parallel computers.



1.3 Overview

The remainder of this thesis is organized as follows.

e Chapter 2 gives a formal introduction to the PRAM model and its
resulting complexity theory.

o Chapter 3 reviews the main realistic obstacles to general purpose par-
allel computation that have been recognized to date, and some of the theo-
retical solutions which have been advanced to cope with them.

e Chapter 4 gives a detailed and critical description of the Block PRAM
model, which is the main model studied in this thesis.

e Chapter 5 gives Block PRAM algorithms and lower bounds for specific
problems. The parallel complexities of the two most fundamental PRAM
algorithms, prefix sums computation and list ranking, are separated for the
first time, justifying a claim of Gazit, Miller and Teng [71]. New optimal
Block PRAM algorithms are given for prefix sums computation and string
matching. New Block PRAM lower bounds are proved for list ranking and
tree contraction. Existing Block PRAM algorithms for permuting data and
performing the Fast Fourier Transform are generalized. Other new Block
PRAM algorithms for integer sorting and graph connectivity are also given.

e Chapter 6 proves tight bounds on the Block PRAM complexity of
hashing and skewing, two techniques which are used to allow for memory
accesses during parallel computation. By showing that hashing does not
necessarily destroy locality, these results address open questions of Valiant
[189] and Gibbons [76] and contradict a comment of Heywood and Ranka
[89].

e Chapter 7 discusses the applicability of the Block PRAM model and
complexity theory to real parallel computers. The notion of locality-preserving
hash functions is introduced, which allows Block PRAM algorithms to be
implemented in real parallel computers which use hashing. The chapter also
discusses some relationships between the Block PRAM model and multi-
tasking and multigauging architectures.

e Chapter 8 surveys relationships between a variant of the Block PRAM
model, the arbitrary-Block PRAM, and two asynchronous parallel complex-
ity models, the XPRAM [190] and the EREW Phase LPRAM [76]. Sev-
eral new simulation results are proved, showing that the models are pair-




wise comparable in power. It is shown for oblivious computations that the
XPRAM and EREW Phase LPRAM models are equivalent, and a connec-
tion is drawn between architectural support for arbitrary pipelining and
support for pointer chasing, thereby addressing a concern of Miller [142].

e Chapter 9 discusses methods for the design and analysis of efficient
asynchronous algorithms, and applies these methods to derive faster circuits
for several fundamental Boolean functions.

e Chapter 10 shows how EREW PRAM and Block PRAM algorithms
can run correctly even when there are occasional failures in interproces-
sor communication. A variant of the Block PRAM model, the Faulty Block
PRAM, is introduced. Using this model, tight simultaneous bounds on com-
plexity and fault tolerance are proved for list ranking and tree contraction,
and simulation results are given for EREW PRAM and certain Block PRAM
computations.

e Chapter 11 gives conclusions and open questions.

1.4 Notations

Throughout this thesis, logarithms are base 2. N denotes the set of positive
integers, Z the set of integers, and R the set of real numbers.

We use the “big-oh” notation to describe the asymptotic growth of non-
negative real-valued functions f,g as n — +o00: :

e f(n) = O(g(n))if thereis a constant ¢ > 0 such that 0 < lim f(n)/g(n) <

e.
e f(n) = Q(g(n)) if there is a constant ¢ > 0 such thatlim f(n)/g(n) > c.
e f(n) = O(g(n)) if there are constants ci,c2 > 0 such that ¢; <
lim f(n)/g(n) < ¢s.

o £(n) = o(g(n)) if lim (n)/g(n) = 0.

o £(n) = w(g(n) if lim f(n)/g(n) = +oo.

If f(n) = n°() we say f(n) is polynomialin n; if f(n) = log®M) n we say
f(n) is polylogarithmic in n; if f(n) = O(1) we say f(n) is constant. Unless
otherwise specified, a complexity bound is optimal if it can be improved only
by a constant factor.

For integers a,n with n > 0, by ¢ mod n we will mean the unique integer
in the range [0...n — 1] which is congruent to @ modulo n.



For real z > 1, by log*n we will mean the least integer k£ such that
log® n < 1, where log®) is the logarithm function iterated & times.

Throughout this thesis, we will use standard terms from graph theory. A
graph is a mathematical structure representing a set of ob jects together with
connections between pairs of those objects. Informally, a graph is any kind
of network. Graph theory is one of the richest and most rapidly growing
fields in pure mathematics. For a survey of graph theory, see e.g. [33, 85].
For a survey of sequential graph algorithms, see e.g. [61]. For a survey of
paralle]l graph algorithms, see e.g. [104].



Chapter 2

The PRAM model

Abstract models describing general classes of computing machines are de-
fined in order to facilitate the development of coherent theories of com-
putational complexity. Algorithms designed for these models can then be
viewed as progress towards solving problems in practice, and lower bounds
proved for these models represent fundamental limits to such progress. The
interpretation of complexity-theoretic results for computations on a given
machine depends on the extent to which the specific characteristics of the
machine have been ignored by the abstract model.

The PRAM model has played a prominent role in research on parallel
algorithms. By using a powerful, idealized model of computation, algorithm
designers can focus on the logical, algorithmic and mathematical issues of
solving problems in parallel. This can make complexity results easier to
obtain, and it is not surprising that results for more realistic models of
parallel computation are often based on corresponding results for the PRAM.
This chapter provides a brief introduction to the PRAM model of parallel
computation and its complexity theory.

2.1 Definition of the model

We formally describe a Parallel Random Access Machine (PRAM) as a set
of p processors sharing a common memory of unbounded size. (The number
p is the parameter for the model.) Each processor is a unit-cost RAM [7]
with a restricted arithmetic instruction set [154] (see Section 4.2.8). The



instruction set includes indirect loads and stores to the shared memory.
The word size is O(logp).

The processors are assigned different identifying numbers 1,...,p. Each
processor has a local memory of unbounded size, in which is stored its iden-
tifying number and its program. All processors synchronously execute the
same program, performing one instruction in each time step. Depending
on their identifying numbers or other local conditions, some processors may
take part in an instruction, while the other processors remain idle. (That
is, the processors may branch, but the branches must be executed sequen-
tially.) The inputs to the program reside initially in shared memory, and
the outputs are also stored there.

Variants of the PRAM model are defined according to whether several
processors can access the same memory location in the same time step. The
possible protocols include Exclusive Read, Exclusive Write (EREW), Con-
current Read, Exclusive Write (CREW), and Concurrent Read, Concurrent
Write (CRCW). In the CRCW case, various rules for resolving write conflicts
may be specified:

CorLisioN: A special collision symbol is written into the contested lo-
cation.

ComMoN: All processors writing to the contested location must be writ-
ing the same value.

ARBITRARY: Nondeterministically, one of the processors writing to the
contested location succeeds.

PriorITY: The lowest-numbered processor writing to the contested lo-
cation succeeds.

Our definition differs from standard descriptions of the PRAM in the
literature [75, 104] in two respects: the (asymptotically) fixed logarithmic
word size, and the restriction of the arithmetic operations included in the
instruction set. These specifications have not always been necessary in the
PRAM theory, but they are essential in order to develop a rigorous and
meaningful Block PRAM theory, as we discuss in Chapter 4. Since the
Block PRAM model is based on the EREW PRAM, we have included these
specifications in our definition of the PRAM model.




2.2 Speedup and efficiency

As with sequential complexity, the time complexity of a parallel algorithm is
given in terms of its worst-case running time for problem instances of size n,
together with the parameters of the complexity model. For example, for a
given PRAM algorithm A, the parallel time complexity téR AM is a function
of the problem size » and the number of processors p. (In this section, where
the algorithm and problem we refer to is understood, the superscript A is
omitted for clarity.)

For a given problem, let tgan represent the best known upper bound on
the sequential complexity of a problem of size n. The speedup of an algorithm
for a parallel complexity model M is tgam(n)/tm(n), a function of n and
the parameters for M. For example, the speedup of a PRAM algorithm is
tram(n)/tpramM(7, ).

The work w used by a parallel algorithm is the parallel time complexity
multiplied by the number of processors. Since p parallel operations can be
simulated in p steps on a single processor, tram(n) < wm(n) for any parallel
complexity model M and for any choice of parameters for M. For example,
tram < wpraMm(7,p) = p - tpram(n, p) for all n,p € N.

A fundamental result of Brent [35] establishes that in a synchronous
parallel model of computation such as the PRAM, an algorithm using ¢
processors can be simulated by p < g processors, conserving work.

Theorem 2.1. [35]
Any synchronous parallel algorithm A running in time ¢ that consists of
a total of 2 basic instructions can be implemented by p processors in time

O(z/p+1).
Proof.
Let z; be the number of instructions performed in the i-th step of A.

Using p processors, this step can be simulated in O(z;/p + 1) time. Hence
A can be simulated in ¢_, (z;/p+1) = O((Xt., z:)/p+1) = O(e/p+1).0

Brent’s Theorem allows us to use the quantity of work in expressing
asymptotic complexity bounds throughout this thesis. For example, an al-
gorithm which runs in O(logn) time on n/logn processors will be said to

10




run in O(n/p + logn) time.

Work as a complexity measure has practical importance, as typically
many applications share the computational resources of a parallel computer.
The power of a parallel computer can be expressed as the amount of work
it can do in a given amount of time. A parallel algorithm for model M
uses this power efficiently (within a constant factor) if wm(n)/tram(n) =
O(1) for some range of parameters for M. For example, if tpram(n,p) =
O(tram(n)/p+ f(n)), then the algorithm is efficient for p = O(tram(n)/ f(n)).

Speedup and efficiency, then, are central objectives in the design of par-
allel algorithms. As Kruskal, Rudolph and Snir have emphasized recently in
[113], the search for fast, efficient parallel algorithms constitutes the basis
of parallel complexity theory.

2.3 Open problems

Research in parallel complexity theory is concerned with the question of
which problems can be solved efficiently using massive parallelism. We men-
tion here two of the most important and challenging open areas of study
relating to PRAM algorithms.

P =TNC: A problem of size n is in the class P if it can be solved by
a RAM algorithm in n°(1) time, and in the class AC if it can be solved
by a PRAM algorithm in n°®)/p +10g®W p time. Clearly NC C P it is
unknown whether P = NC. The classes P and NC are robust across a large
number of sequential and parallel models of computation, respectively (see
e.g. [60]), and P =?ANC is a fundamental structural question in computa-
tional complexity theory. There is a large class of P-complete problems in
P, such that an NC algorithm for any one of them implies ? = NC. There
are also many interesting problems known to be in P but not known to be
P-complete or in NC, including computing the greatest common divisor of
two integers, finding a perfect matching of a graph, and estimating all of
the (real and complex) roots of an n-th degree polynomial. For a review of
current research on the P =7NC question, see e.g. [79, 80, 144].

The transitive closure bottleneck: Many problems on directed graphs can
be reduced to computing the transitive closure X* = @32, X k of a square
matrix X. Let (5,8, ®, Iy, Ig) be a closed semiring (@ is closed, associative

11




| Problem | § e [®@ |Is |Is]

Strong components {0,1} v A 0 1
Finding a cycle {0,1} v A 0 1
Minimum cost spanning tree | R* Uoco | min | max [co |0
Topological sorting RUoo |max |+ —00 |0
Shortest paths RUoo |min |+ 00 0
Longest paths RUoo |max |+ —~00 | 0
Maximum reliability paths | [0,1] max | X 0 1

Table 2.1: Directed graph problems reducible to transitive closure

and commutative; ® is closed, associative and right- and left-distributive
over @; Iy is a zero with respect to ®). Let G = (V, A) be a directed graph
with V' = {1,...,n}, and each of the m edges (i,7) € A has alabel z;; € 5.
Define z;; = Ig for (4,5) € V?\A. With appropriate choices for @ and ®,
each of the problems in Table 2.1 can be solved by the transitive closure
computation.

Unfortunately, this technique does not lead to any practical, efficient par-
allel algorithms. Each of the first four problems in Table 2.1 can be solved
sequentially in time either O(m+n) and the last three can be solved in time
O((m+ n)logn). However, the best known upper bound on the complexity
of performing transitive closure using a polynomial number of processors is
O(M(n)/p + log® n), where M(n) = O(n?7) is the sequential complexity
of matrix multiplication. Because the only known NC algorithms for these
problems involve transitive closure as a subroutine, this gap in complexity
is known as the transitive closure bottleneck [104]. This bottleneck is paz-
ticularly troublesome for computations on sparse, irregular graphs, where
m = o(n?), since the transitive closure algorithm requires an input of size
©(n?). Some progress towards overcoming the bottleneck for planar graphs
has been reported recently in [100].

12




Chapter 3

Realistic issues

Computers are not fast enough. The clearest evidence for this is the fact
that humans can still solve many problems much more rapidly than our most
powerful computers. For example, human capabilities for real-time visual
and auditory processing remain far beyond the frontiers of supercomputing.
“What the human mind does almost effortlessly,” writes Hillis [91], “would
take the fastest existing computers many days. These electronic giants that
so outmatch us in adding columns of numbers are equally outmatched by
us in the processes of symbolic thought.”

Demands for greater computational performance are coming from an
economy where information is increasingly a source of employment, cap-
ital and production, from a research community where data is collected
more rapidly than it can be processed, and from a design community where
models and prototypes are too complex for human intuition and reason-
ing.! High-performance computing has applications throughout the natural
and social sciences, and in medicine, engineering, business and communi-
cation. Massive computational power will be necessary to achieve many of
the aspirations of humanity, from exploring space and managing the earth’s
resources, to mapping the human genome and modeling molecules.

Large-scale parallel computers will bear the final responsibility for im-
proving computational performance. Since von Neumann’s post-World War
IT computer designs [200], the technological advances which have provided

!Whether or not we welcome these developments, we can hope that computer science
will aim to offer solutions that will benefit humanity.
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faster sequential processors have been increasingly difficult to achieve and
are ultimately limited by the speed of light. The speed of a sequential pro-
cessor limits, in turn, the extent to which a large memory can be utilized
efficiently. We are, therefore, approaching a time when it is no longer cost-
effective to build bigger sequential computers to achieve high performance.
The inherent difficulty of efficiently improving the performance of sequential
computers is known as the von Neumann bottleneck [25].

Parallel computation offers an alternative approach to achieving high
performance. Instead of building one big sequential computer, we can build
a machine consisting of many small computers running in parallel. Provided
that we can use the computing power of such a machine efficiently, we have
overcome the von Neumann bottleneck.

The purpose of parallel complexity theory is to explore the extent to
which efficient and fast parallel computation is possible. By showing that
many important computational problems can be solved quickly and effi-
ciently in an ideal parallel complexity model, the PRAM theory represents
important progress toward high-performance computing. Before we can ap-
ply this theory, however, the gap between the ideal PRAM and the realities
of parallel computation must be bridged.

3.1 Bridging models for parallel computation

In recent years, the complexity theory research community has made sub-
stantial progress towards demonstrating that there are no theoretical ob-
stacles to building massive general purpose parallel computers. The gap
between real parallel architectures and the ideal PRAM model has been
bridged in two discernible stages.

From realistic machines to realistic shared-memory models: A realistic
distributed memory machine, consisting of a set of processor-memory ele-
ments connected by a physical network, can simulate shared memory in the
following way. The aggregate of the local memory elements is taken to be
the shared memory. To write into a shared memory location, a processor
sends the data to the location’s host processor through the network. To
read a shared memory location, a processor sends a request to the location’s
host processor, which sends back a reply.

14




The research community has responded to the practical difficulties posed
by this simulation by identifying key problem areas (see Section 3.2) and de-
veloping many promising techniques (see Section 3.3). Despite the achieve-
ments of this research program, it should be kept in mind that simulation
techniques are methods for coping with reality, not changing reality. In par-
ticular, at present we must continue to view the PRAM as an unrealistic
model of parallel computation.

e From realistic shared-memory models to the ideal PRAM: These de-
velopments have led recently to the introduction of realistic shared-memory
models. Since 1989, models have been developed which take into account
communication latency [5, 6], asynchrony [52, 76, 138, 148, 190] and/or com-
ponent failures [43, 99, 106]. Such models are necessarily weaker than the
PRAM model. However, most of the new models have been introduced to-
gether with simulation results, demonstrating the extent to which PRAM
algorithms can be implemented with little or no asymptotic loss in efficiency
(see Chapter 8).

This proliferation of realistic shared-memory models can be largely jus-
_ tified by their potential role in bridging the gap between hardware and soft-
ware. If a model of parallel computation (a) is realizable in hardware (e.g.,
using the distributed-memory simulation described above) and (b) allows
efficient simulations of PRAM software, then it can be used as a bridging
model. Computer manufacturers can produce machine realizations of the
bridging model with different sizes and technologies, while software design-
ers can write algorithms based on the PRAM model which will run efficiently
on any such machine. As Valiant writes in his paper introducing the idea of
a bridging model for parallel computation [189]: “A major purpose of such
a model is simply to act as a standard on which people can agree...The
adoption of such a standard can be expected to insulate software and hard-
ware development from one another and make possible both general purpose
machines and transportable software.”

It is likely that the adoption of a bridging model for parallel computation
will have long-term implications for computer manufacture, and so it is
important to make the right choice. In [189], Valiant proposed the Bulk
Synchronous Parallel (BSP) model of computation (see Chapter 8) as such a
bridging model, and programming interfaces have been developed for future
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Problem Solution

Defined Described | Evaluated

Communication latency | Pipelining (3.3.1) Chapter 5

(3.2.1) Parallel slackness (3.3.1) Chapter 7

Contention (3.2.2) Hashing (3.3.2) Chapter 6
Skewing (3.3.2) Chapter 6
Combining (3.3.2)

Congestion (3.2.2) Randomized routing (3.3.3) | Chapter 7
Information dispersal (3.3.5) | Chapter 10

Asynchrony (3.2.3) Bulk synchrony (3.3.4) Chapter 8
Parallel slackness (3.3.1) Chapter 8
Robust computation (3.3.6)

Network failure (3.2.4) | Information dispersal (3.3.5) | Chapter 10
Parallel slackness (3.3.1) Chapter 10

Processor failure (3.2.4) | Robust computation (3.3.6)

Table 3.1: Cross-reference: problems and solutions

machines based on the BSP model [14]. I n Chapter 7, we recommend the
Block PRAM model as a valid alternative, with important consequences for
both hardware and software design.

3.2 Realistic constraints to parallel computation

We turn now to a survey of the difficulties involved in simulating shared
memory on massively parallel distributed-memory architectures. Table 3.1
provides a cross-reference between the problems described in this section,
the simulation techniques described in Section 3.3, and the chapters in the
thesis, if any, in which they are discussed in the context of the Block PRAM
model.

3.2.1 Communication latency

Distinct processors working together on the same problem will need to com-
municate from time to time. In present-day machines, this communication
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must take place through a physical network and is subject to considerable
delay. “It is becoming abundantly clear,” write Aggarwal, Chandra and Sair
[6], “that much of the complexity in parallel computing is due to the diffi-
culty in communication itself.” Although optical networks have been studied
extensively as a long-term prospect [137], an access to a non-local memory
location will continue to take longer—and be more difficult to control—than
a local computation.

The topology of the network connecting the processors is a basic design

choice. The central tradeoff is between communication latency, the transit

time that must be allowed for a single message, and connectivity, the number
of wires and ports represented by the network. In graph-theoretic terms, we
may speak of the tradeoff between diameter and maximum degree. A signal
may have to traverse a path as long as the diameter of the graph, passing
through routing hardware at each vertex or node; the diameter is, therefore,
an asymptotic lower bound on communication latency in the network. Each
wire between processors, or link, must be represented by an edge in the
graph; the maximum degree is, therefore, an asymptotic lower bound on the
number of ports that must be available to at least one of the processors.

We give some important examples in Table 3.2. For illustration, we
describe the networks for approximately p = 2048 processors.

If the network is to be used for general problem solving, another graph
property becomes important: vertez-transitivity. A graph is vertex-transitive
if for every pair of vertices v, w, there is an automorphism ¢ on the graph
such that o(v) = w. Informally, a vertex-transitive graph looks the same
when viewed from any of its vertices. The star and binary tree graphs are
not vertex-transitive, and they are bad choices for a general purpose net-
work, because too much traffic goes through the root, causing congestion (see
Section 3.2.2). Randomized routing techniques for keeping network traffic
uniform exist for the other vertex-transitive networks in the Table 3.2 (see
Section 3.3.3).

Ultimately, any network of processors must be constructed in a three-
dimensional world, and the physical diameter of any network of p processors

2p = 2047
3p = 2197; with wraparound
*p = 2025; with wraparound
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Graph Diameter Max degree
. P Processors I p=2048 | p=1p ] p= 2048
Complete graph 1 1 p—1 2047
Star 2 2 p—1 12047
Hypercube logp 11 logp |11
Butterfly 2logp — O(loglogp) | 16 4 4
Shuffle-exchange | 2logp 22 3 3
Binary tree? 2log(p+1) -2 20 3 3
Cube-conn. cycles | 2.5logp — O(loglogp) | 20 3 3
Cube mesh? 1.5pt/3 18 6 6
Square mesh? pt/? 44 4 4
Ring /2 1024 2 2

Table 3.2: Graph properties of interprocessor networks

must be Q(p/3). Any network based on a graph with a diameter of o(p!/3)
must therefore contain some long wires. Currently, routing of signals at
the nodes of an interprocessor network takes much longer than propagation
of signals along the wires. For this reason, we tend to speak of O(logp)
latency for the hypercube-type networks currently being built, even though
this cannot be justified when the number of processors grows without limit.

We have discussed the problem of communication latency in some detail
because we believe it represents the most fundamental practical obstacle to
large-scale computing. If communication latency did not exist, each of the
other obstacles described in this section would be considerably simpler, if
not trivial.

Communication has been long recognized as a key obstacle to paral-
lel computation [131]. The complexity of interprocessor communication in
parallel computing has been studied for more than a decade.

¢ T'wo-processor communication complexity, as formalized by Yao [207],
has been used as a tool for proving complexity bounds for distributed com-
puter networks, VLSI circuits, Boolean circuits (see Section 9.2) and test
trees, and as a structural measure in its own right; the various topics are
surveyed in [39, 120, 132].
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e Sequential computations with parallel accesses to disks and other ex-
ternal secondary storage devices, with corresponding communication delays,
have been studied in [197, 198, 199], extending work in [2, 4].

e Computations on data-dependency graphs have been mapped onto
specific networks of processors [62, 73, 81, 109, 123, 163] and general sets
of communicating processors [6, 151, 152] to minimize overall computation
and communication time.

e Communication latency has been introduced as a parameter in shared-
memory models of parallel computation [5, 6, 76, 152]. Algorithms have
been designed for these models, and techniques have been developed for
simulations of PRAMs and computations on data-dependency graphs.

Since we wish to study communication latency as an obstacle to realizing
the PRAM theory, our work contributes to the last of these research areas.
In Section 3.3.1, we describe proposed methods for coping with latency. In
Chapter 5, we apply and evaluate these methods by showing how PRAM
algorithms can best be implemented to run quickly and efficiently on the
Block PRAM, a particular shared-memory complexity model which accounts
for latency.

3.2.2 Contention and congestion

In current large-scale parallel computers, the memory resource is contained
in modules, or banks. Each module contains many memory locations, and
each is capable of serving only a constant number of requests during each
time step. The modules are connected to the processors by way of a physical
network, and each link in the network is capable of transmitting only a
constant amount of data during each time step. (For example, the machine
may consist of a network of processor-memory units, or processing elements.)

Contention results when the accesses during a time step require a module
to serve too many requests, and congestion occurs when a link or node is
required to carry too much data. Excessive accesses and transmissions must
be serialized, or staggered to take place over several time steps. Unless
contention and congestion are managed, they may well dominate the actual
running time of a theoretically efficient algorithm [159].

As explained by Kuck in a groundbreaking 1977 paper [116], contention is
especially likely to occur when there are a number of different but systematic
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patterns of access to shared memory, e.g. in multidimensional arrays. Con-
gestion has been observed in on-line deterministic routing of certain “hard”
permutations on the torus and butterfly networks, e.g. the bit-reversal per-
mutation [130, 167]. For a greedy routing strategy on the n X n torus,
tight lower bounds on congestion have been proved for specially constructed
“blocking” permutations [88].

(It should be noted that congestion is not an inherent obstacle to deter-
ministic routing of permutations on static interconnection networks, since
routing can be performed by specialized sorting networks such as the Ajtai-
Komlés-Szemerédi network [10]. However, practical sorting networks have
not yet been developed for this purpose.)

The PRAM model does not restrict memory access patterns; this is espe-
cially true of the CREW and CRCW variants. Contention and congestion,
therefore, remain significant obstacles to realizing the PRAM model. Band-
width, the capacity of a memory module for inputting and outputting data
and the capacity of a link for carrying data, can be increased through im-
proved technology. However, these improvements are soon exhausted, and
inevitably we must find ways of smoothing out demands on the memory
modules and traffic in the network. Techniques for overcoming contention
are described in Section 3.3.2 and evaluated in Chapter 6, and methods
for overcoming congestion are described in Section 3.3.3 and evaluated in
Chapters 7 and 10.

3.2.3 Asynchrony

It is difficult, and sometimes impossible, to predict accurately the time re-
quired to execute a process in a parallel algorithm. Evidence of this difficulty
is the fact that experimentation, benchmarking and fine-tuning are the pre-
dominant activities of researchers concerned with implementing large-scale
parallel applications. This situation is unlikely to change in the foresee-
able future. It has long been observed in parallel computation [118, 204]
that machine specifications provide very limited information about machine
behavior in practice. Intricate characteristics of the input data and the real-
time activities of the operating system can cause great variations in pro-
cessing speed. The machine specifications themselves may be subjected to
complicated kinds of alteration, as components are replaced and upgraded.
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Asynchrony is the unpredictable variation of processor speeds in parallel
computers. In particular, asynchrony means that we do not know the speeds
of processors relative to one another. This necessarily makes communica-
tion more difficult. In traditional specifications of parallel algorithms [94],
communication between two processors occurs when one processor performs
an action (e.g. writes into a shared memory location, sends a message) that
the other later detects (e.g. reads the shared memory location, receives the
message): the first event must occur before the second. To guarantee this
ordering of events, there must be an interaction point> in real time, made
known to both processors, which occurs after the first event but before the
second [118]. This entails some synchronization control mechanism; see [76]
for a review of hardware and operating system support for providing inter-
processor synchronization. An interaction point common to all processors
is called a synchronization barrier [76, 189].

This is not to say that communication is impossible without synchroniza-
tion. If, at runtime, communication events happen to occur in the correct
order even without synchronization, then certainly the communications have
taken place and the computation is valid. However, synchronization is neces-
sary in the specification of an algorithm to guarantee—through the ordering
of communication events—that the specified communications always take
place. Algorithms so specified are called semi-synchronous.® A significant
advantage of semi-synchronous algorithms from the standpoint of debugging
is that such algorithms are repeatable:” for a given input, every execution
gives the same intermediate and final results. Semi-synchronous algorithms
are surveyed in [76, 118, 189].

Algorithms that can be specified without synchronization are called asyn-
chronous. In asynchronous algorithms, there is no explicit dependency be-
tween processes. Processors never wait for data, but instead proceed with
their computations based on the data available to them at the time. Asyn-
chronous algorithms are surveyed in [118, 138, 148, 208]; also see Chapter 9.
Since communication events do not take place in any determined order, such
algorithms are in general not repeatable. For a given input, the only result

®Also called “condition synchronization” [21] and “activity synchronization” [72].
$Or “synchronized” [118].
"Or “determinate” [102].
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| Semi-synchronous algorithms | Asynchronous algorithms |

Use interaction points No interaction points

Synchronization supported No support for synchronization
in hardware and operating system -

Deterministic (repeatable results) Nondeterministic

Easier to debug and analyze Potentially more efficient

Table 3.3: Semi-synchronous vs. asynchronous algorithms

guaranteed to recur in every execution is the final one. This can make de-
bugging very difficult [76]. Asynchronous algorithms also seem to be more
difficult to analyze for complexity than semi-synchronous algorithms [52].
Asynchronous algorithms are potentially more efficient because no time is
spent waiting for data. However, this time savings is soon surrendered if we
need to implement synchronization algorithmically; i.e., through specially
designated shared variables. These points for comparison are summarized
in Table 3.3.

It should now be clear that the PRAM model does not adequately spec-
ify algorithms in the presence of asynchrony. PRAM algorithms give an ex-
plicit order of execution for all instructions, including accesses to the shared
memory. A najve approach to implementing a PRAM algorithm on an asyn-
chronous machine would be to guarantee this order by placing a synchro-
nization barrier after every time step. However, taking the line of argument
of Section 3.2.1, we cannot expect to implement a synchronization barrier
in unit time: a synchronization barrier requires a considerable amount of
interprocessor communication, and communication in real machines is sub-
ject to latency. More promising techniques for coping with asynchrony are
described in Sections 3.3.4 and 3.3.6 and evaluated in Chapters 8.

3.2.4 Network and processor failures

It is a fundamental principle of engineering that the larger and more complex
a system is, the more likely it is to fail. This follows from the reasonable
assumption that each component of a system has some positive constant
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probability of failure. In a parallel computer with many thousands of pro-
cessing elements and communication paths, the possibility of failure is a
serious obstacle to achieving the correctness and complexity specifications
of any given parallel program. Clearly, we should not proceed with designing
parallel algorithms and programs under the assumption that improvements
in technology will eliminate the threat of failure.

Many kinds of failure can affect the performance of a multiprocessing
network. Network failures are disruptions in the transmission of data along
communication paths in the network. A communication path consists of
links (e.g. wires) and nodes (e.g. switches). Processor failures are disruptions
in the local execution of computations.

e Link (node) interruption occurs when a link (node) ceases to transmit
data.

e Link (node) corruption occurs when a link (node) transmits incorrect
data.

e Processor interruption occurs when a processor ceases to operate.

e Processor corruption occurs when a processor operates incorrectly.

Each of these failures can be randomly-distributed (each component fails
with the same independent probability p) or worst-case (components can be
failed by an omniscient adversary trying to disrupt the computation). Very
pessimistic lower bounds have been proved for the problem of tolerating
worst-case failures [28].

Further, these failures can be restricted to transient (occurring for only a
few time steps) and localized (occurring only in a small part of the network)
cases, but more general failures are possible.

The PRAM model does not account for the possibility of failures. To
support the PRAM model in the real world, we must find ways to execute
PRAM algorithms correctly and efficiently in the presence of failures. Meth-
ods for tolerating network failures are described in Section 3.3.5, and meth-
ods for tolerating processor failures are described in Section 3.3.6. Chapter
10 presents a scheme, based on the Block PRAM model, for toleratmg tran-
sient, rando mly-distributed network corruption.
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3.3 Techniques for simulating shared memory

3.3.1 Pipelining and parallel slackness

As we have seen in Section 3.2.1, communication through a multiprocessing
network may be subject to a delay, or latency, proportional to the diameter
of the network. Let ! denote the latency of a network, as measured by the
time steps of a given processor. (Recall that [ is a function of the number
of processors p.) Then an access by that processor to a single non-local
memory location can, in general, take ©([) time steps to complete.

Fortunately, this time does not have to be wasted. Instead of idly wait-
ing for the access to complete, the processor can initiate [ more non-local
memory accesses, one after the other, in time ©(/). By the time the last
of these accesses is initiated, we may expect the first access to have been
completed. In this way a processor can perform [ non-local memory accesses
not in time ©(I?), but optimally, in time ©(l). The effect is that, within
constant factors, a steady flow of memory accesses initiated at the proces-
sor results in an equally steady flow of memory accesses being performed
remotely in the network, as if there were a pipeline between the processor
and the non-local memory. The overhead due to communication latency
is “tolerated” or “hidden.” This technique is therefore called pipelining of
memory accesses, and the effect of this technique is called latency hiding.

Currently, it is debatable which sequences of memory accesses by a pro-
cessor can be pipelined. There is no theoretical evidence to suggest that any
restrictions are necessary. Accordingly, Gibbons’s Asynchronous PRAM
model [76] allows pipelining of arbitrary sequences of accesses to the shared
memory. There is as yet no practical evidence that arbitrary pipelining can
be supported (i.e., with small constant factors) [76, 189]. Further evidence
that arbitrary pipelining cannot be supported by current parallel computers
is the observed difficulty of implementing pointer-based algorithms [142]; see
Section 8.2.3.

We should note that this situation may change as “fine-grained” paral-
lel architectures are introduced, with support for arbitrary pipelining as a
stated objective [19]. Currently, however, more attention is being given to
reducing the communication latency ! rather than providing for arbitrary
pipelining per se [57].
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A more conservative alternative is offered by block pipelining. In block
pipelining, only contiguous blocks of memory are pipelined. For several
years, block pipelining has been achieved and exploited in real multiproces-
sor networks ([24, 36, 38, 68, 158, 171], cited in [5]). As Aggarwal, Chandra
and Snir observe [5]: “Typically, it takes a substantial period of time to get
the first word from global memory, but after that, subsequent words can be
obtained quite rapidly—essentially at the clock speed of the machine...The
size of a block that is transferred is typically correlated with communication
latency.” ‘

As we will see in this thesis, this assumption is still strong enough to allow
efficient simulations and implementations of PRAM algorithms (even when
asynchrony is introduced). An efficient PRAM simulation is a procedure
by which any PRAM algorithm on q processors can be executed on a more
realistic model with p processors so that the running time is increased by a
factor of ©(¢/p), provided that this factor ¢/p is big enough. The minimum
number ¢/p of processes in the PRAM algorithm that must be mapped onto
each processor in the realistic model is called the parallel slackness required
by the simulation [188].

(A simulation that increases running time by a factor of ©(sq/p) is said
to have slowdown s = s(p). Efficient simulations are those with constant
slowdown.)

For example, we can use block pipelining to hide latency provided that
we have sufficient parallel slackness so that although each processor may
make many memory accesses during each simulation step, these accesses
can be grouped into blocks of length (/). Many PRAM algorithms can
be restructured specifically to provide for block accesses using O(!) parallel
slackness, as we will see in Chapter 5. For PRAM algorithms in general,
somewhat more parallel slackness (Ip®(1)) is needed to guarantee with high
probability that block accesses can be used; this result of [5] is formally
presented in Chapter 7. Parallel slackness is also exploited in efficient PRAM
simulations on models with asynchrony (Chapter 8) and transient, randomly
distributed network corruption (Chapter 10).
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3.3.2 Hashing, skewing and combining

Assuming that memory modules have been designed with sufficient band-
width to provide normal service, contention should occur only when the
demands on the modules are distributed very unevenly. This may happen,
nevertheless, when the processors attempt to access the memory in system-
atic patterns, as discussed in Section 3.2.2.

e Hashing: One solution to this problem is to assign random logical
addresses to the memory locations according to some hash function. The
probability of each particular mapping of memory accesses to modules is
exactly the same; so that with high probability, the physical distribution of
memory accesses is nearly uniform, regardless of the pattern of addresses
specified in the algorithm. However, hashing completely at random is not
practical. Hash functions must be capable of being computed quickly and
specified in relatively little space, so that a processor can efficiently evaluate
the hash function for all of its memory accesses.

Universal families of hash functions were introduced by Carter and Weg-
man [37] as a practical way to use randomized hashing. The hash function
to be used is chosen randomly from a universal family consisting of functions
that are easy to specify and compute. For any set of A memory addresses,
the probability that the function maps them to modules in a particular pat-
tern is approximately the same as if the hashing had been done completely
at random. The number £ is a parameter of the family and is a measure of
its performance, or independence. High-performance families can be used to
avoid contention, with high probability, in PRAM simulations [5, 141, 190].
Lower-performance families (with kA = 2) have been adequate so far in prac-
tice [189], although extra care in choosing parameters for the family can be
necessary [145].

o Skewing: When the patterns of shared memory access are known in ad-
vance, the memory locations can sometimes be deterministically addressed,
or skewed, to avoid contention. A standard result, first shown by Kuck,
is that it is possible to assign the entries of an N X N array to N mem-
ory modules so that each row, column and long diagonal vector contains
exactly one entry in each module, e.g. see [115, 121, 122]. Similar results
can be obtained for accessing square subarrays and general diagonals of
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two-dimensional arrays [107] and vectors in multidimensional arrays [205].

Note that hashing and skewing differ only in intent and effect. Hashing
is used to prevent contention in general purpose computation (e.g. PRAM
simulation) and skewing is designed to avoid contention for specific patterns
of memory access. We therefore tend to think of hashing as randomized
addressing, and skewing as deterministic addressing. The two words describe
the use of memory addressing in two very different contexts of contention
avoidance.

e Combining: A special kind of contention occurs when two or more pro-
cessors simultaneously attempt to access the same memory location. This
may happen when running algorithms written for models which allow con-
current reads or writes, such as the CREW and CRCW PRAM models.
Here, readdressing the memory cannot help; the demands on a single mem-
ory address will be the same no matter where it exists physically.

One solution, attributed to Gottlieb, Lubachevsky and Rudolph [78],
is for multiple requests to a memory location to be transmitted through
a combining network. The simplest example of a combining network is a
binary tree. Requests enter the network at the leaves and move toward the
memory location at the root. Requests that meet at internal nodes of the
tree can be combined. With the appropriate bookkeeping at each node,
replies from the memory location can be sent back through the tree to the
requesting processors.

It would be impractical to provide a different combining network for each
memory location, but Ranade [168] has shown that this is not necessary. The
wires and switches in a butterfly network of processor-memory elements can
serve as the combining network for every memory location, provided that
the memory is hashed (using a high-performance universal family). This
enables a CRCW PRAM algorithm to run on a (fault-free) butterfly network
containing the same number p of (synchronous, fault-free) processors with
a O(logp) factor increase in time (with high probability).

3.3.3 Randomized routing

As described in Section 3.3.2, congestion has been observed in the routing
of specific permutations around interprocessor networks, when a determin-
istic algorithm is used. However, random permutations can be routed, with
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very low probability of congestion, simply by sending each packet of data
along a randomly chosen shortest path to its destination. This suggests that
randomization should be introduced in order to prevent congestion.

In two-phase randomized routing, a message from node 7 to node j is
sent first from ¢ to some randomly chosen node k, then on to j, taking
shortest paths each time. Note that regardless of which specific permuta-
tion is required, each phase of the randomized algorithm performs a random
permutation, taken from a uniform distribution over the set of all permu-
tations. This key idea, that routing two random permutations is preferable
to routing one specific permutation, was introduced by Valiant and Breb-
ner [187, 191] and has survived many refinements. Randomized algorithms
have now been developed for routing messages around meshes, butterflies,
shuffle-exchange graphs and hypercubes [9, 125, 161, 168] so that with high
probability, all messages arrive at their destinations in time proportional to
the diameter of the network.

It should be noted that Ranade’s PRAM simulation on the butterfly
network uses deterministic routing; congestion is avoided by hashing the
memory address space. This demonstrates that randomized routing is not
always necessary to avoid congestion in general purpose parallel computing.
Thus far, however, randomized routing has been applied to a wider range of
architectures than randomization through hashing alone. We should there-
fore expect that models of parallel computation will generally be supported
in real machines by the use of randomized routing to avoid congestion. In
Section 4.2.6, we discuss the implications of randomized routing for our
particular study.

Information dispersal, a method for avoiding congestion as well as toler-
ating link failures, is described in Section 3.3.5.

3.3.4 Bulk synchrony

As we have seen in Section 3.2.3, it is possible to implement a PRAM al-
gorithm on an asynchronous network of processors by implementing a syn-
chronization barrier after every step. To do this, however, requires at least
as much time as must be allowed for communicating across the network.
Let B denote the time required to implement a synchronization barrier, as
measured by the time steps of a given processor. Then B = Q(!), where B
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and [ are both functions of p.

Fortunately, it is often not necessary to synchronize after every time
step. Each interaction point in a PRAM algorithm occurs precisely when
a write to a shared memory location is followed some time later by a read
to the same location. Provided that no interaction points occur, processors
running asynchronously can execute B instructions each between synchro-
nization barriers. The B instructions, followed by a synchronization barrier,
together comprise a phase [76] or superstep [189] taking time ©(B). In this
way processors in an asynchronous machine can each perform B instruc-
tions between synchronization barriers not in time ©(B?), but optimally, in
time ©(B). The effect is that, within constant factors, all processors take
the same time to perform each phase. The overhead associated with the
requirement of synchronous operation is “tolerated” or “hidden.” In this
manner, synchrony is achievable in bulk, and a PRAM model with a pa-
rameter B to represent the cost of a synchronization barrier can be called a
semi-synchronous [76] or bulk-synchronous model [189].

For example, we can use bulk synchrony to hide the synchronization over-
head provided that we have sufficient parallel slackness so that although each
processor makes many memory accesses during each simulation step, these
accesses do not induce interaction points. Many PRAM algorithms can be
restructured specifically to provide for bulk synchrony using parallel slack-
ness O(B) ([76]; see also Chapter 8). It is instructive to note the similarity in
principle between bulk synchrony and block pipelining. Not surprisingly, we
can observe a corresponding similarity between the restructuring of PRAM
algorithms to provide for these techniques. This is formalized in Section
4.2.10 and Chapter 8.

We have informally described the Phase LPRAM of Gibbons [76] (the
“L” is for latency; the model is named after the two parameters added to the
PRAM model, B and [. The Phase LPRAM implements synchronization
only by using barriers. The idea of bulk synchrony can be generalized to
include synchronization steps other than barriers; i.e. subset synchronization
steps. Important primitives and fundamental algorithms using subset syn-
chronization are presented in [76]. Typically, these algorithms perform best
when synchronizing subsets of ©(!) processors. For our purposes, the inclu-
sion of subset synchronization offers very small improvements in complexity
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for specific problems and no improvement for general simulations, as we
show in Chapter 8. Therefore, we will only consider barrier synchronization
in this thesis.

3.3.5 Information dispersal

As discussed in Section 3.2.4, the problem of network routing is complicated
by the presence of faulty links and nodes. If a packet of data is routed along
only one path in the network, then every link and node in that path must be
reliable. If several paths are used, we can be more flexible. This observation
suggests three possible approaches to routing in faulty networks.

e Route each data packet around failures adaptively, as they are encoun-
tered in the network.

e Route several copies of each data packet along different paths. With
high probability, most of the paths will be reliable and the correct version
of the packet can be determined at the destination node.

e Break each data packet up into smaller fragments which give a redun-
dant encoding of the data, so that the packet can be reconstructed from
any majority of its fragments. This technique is called information dispersal
[23, 165].% Route the fragments of each packet along different paths. With
high probability, most of the paths will be reliable and the packet can be
correctly reconstructed at the destination node.

Adaptive routing for fault tolerance in multiprocessor networks has been
extensively studied. The most significant result to date is an efficient rout-
ing algorithm for hypercube networks. For a p-processor network, O(p) ran-
domly distributed node interruptions and @(plogp) randomly distributed
link interruptions can be tolerated efficiently with high probability [87].

The use of multiple paths to route a single packet is a comparatively
naive approach. The method can be refined by information dispersal, so
that space is used more efficiently; and by adaptive routing, so that more
faulty links can be tolerated. All of the results to date concern routing on the
hypercube. In Rabin’s original scheme for a p-processor network, ©(p/ log p)
transient, randomly distributed link interruptions can be tolerated with a
O(log p) slowdown with high probability [165]. By introducing adaptive

8Information dispersal is one of many applications of the theory of error-correcting
codes [192].
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routing, [87, 133] improved the number of link interruptions tolerated to
O(p), and the failures do not have to be transient. However, the slowdown
is still O(logp).

An advantage of information dispersal is that it can be used to avoid
congestion. Data fragments blocked by traffic at a link can be considered
lost due to link failure. Even if each link is capable of carrying only the
equivalent of six packets, all of the routing results in the previous paragraph
can be achieved.

In Chapter 10, we apply the information dispersal idea in the architecture-
independent context of the Block PRAM model, and we show that given
1p%) parallel slackness, we are able to perform the routing efficiently by
bundling the fragments together. However, having hidden the network struc-
ture, we are unable to exploit adaptive routing. Therefore, we are only able
to match the fault tolerance properties of Rabin’s routing algorithm [165]
and not the later improvements.

3.3.6 Robust execution

In the theory of sequential computation, faulty processors are anomalies.
Implicit in every in sequential complexity result is the hypothesis that the
machine is working correctly. Analogously, the standard practical solution
to processor failure in the sequential case is straightforward: fix the fault or
use another computer.

In massively parallel computers such solutions are inappropriate. It is
obviously wasteful to shut down, let alone discard, a 65,000-processor paral-
lel computer for the sake of one faulty processor. Yet, as observed in Section
3.2.4, we expect such a machine to experience processor failures much more
often than a sequential computer. These concerns demonstrate the need
for an on-line scheme for robust parallel computation, so that reliable pro-
cessors can proceed with a computation even when other processors fail to
contribute to the task.

Such a scheme, originally suggested by Kanellakis and Shvartsman in
[99], uses a system of pointers to keep track of progress during a given
time step. The reliable processors perform the instructions that the faulty
processors failed to do. Each reliable processor follows its pointer to find its
next assignment, then updates the pointer. Using this technique, one step
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of a CRCW PRAM with p processors can be simulated robustly in O(log p)
time on a CRCW PRAM with O(p) reliable processors and possibly some
faulty processors.

This scheme is refined in [105, 106]. Notably, [105] shows that this sim-
ulation of one step cannot be improved, even if no processors are actually
faulty. However, the simulation can be made efficient in the expected case
by using the following analogy to parallel slackness. Several steps are sim-
ulated tentatively, each with high probability of correctness. Counters for
each processor keep track of the number of steps which have been success-
fully performed. This work is then verified, or audited, using the counters.
If there has been an error, the sequence of steps is undone and another at-
tempt is made. Using this framework, [105] shows that any polylogarithmic-
time CRCW PRAM algorithm can be executed efficiently and robustly on a
CRCW PRAM in which the (independent) probability of a processor failing
during a given time step is p~1),

Robust computation can be used to tolerate asynchrony. If a processor
does not execute its assigned instruction during a given unit of time, it may
be considered to have failed during that time unit. Robust computation
reassigns an instruction to working processors until it is successfully exe-
cuted. This general scheme can be tailored to specific algorithms, and it
is interesting to compare the techniques in [99, 106] and the asynchronous
algorithms in [52, 53, 138] to see how this is done.
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Chapter 4

The Block PRAM model

In the past ten years, and especially in the past two, there has been a flood
of new parallel complexity models and measures in the literature [5, 6, 52,
76, 138, 141, 148, 189]. As Kruskal, Rudolph and Snir [113] observe, “it is
easy to obtain hundreds of distinct models by systematically varying all the
various parameters of model definitions.” The typical pattern of theoretical
research into practical issues in parallel complexity has been to introduce a
new model for each issue under study.

In this thesis we try to take a more coherent approach. We demonstrate
that a single model—the Block PRAM model of Aggarwal, Chandra and
Snir [5]—is an appropriate context for introducing the problems of commu-
nication latency, asynchrony and fault tolerance, and for evaluating methods
for coping with them. A single complexity measure can be applied to a wide
range of algorithms and simulations, thereby providing comparisons between
alternative techniques. In this chapter we define the Block PRAM model,
justify its specific features, and indicate its place in, and contribution to,
the current discussion on practical issues in parallel computing.

4.1 Definition of the model

A Block PRAM [5] is an EREW PRAM with the following modifications.
It has two parameters, the number of processors p and the communication
latency {. A processor may perform a local instruction, or access a location
of its local memory, in unit time. It may also access a block of b consecutive
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locations in the global memory in time [ 4 b. Since no read or write conflicts
are allowed, concurrent accesses to overlapping blocks are serviced in some
arbitrary order.

4.2 Evaluation of the model

The original purpose of the Block PRAM was to be a model widely appli-
cable to the theoretical literature on parallel complexity that, nevertheless,
accounted for the practical problem of communication latency. By allow-
ing for block pipelining, the Block PRAM model also was able to account
for another important practical phenomenon, granularity, which had largely
eluded quantitative analysis in the parallel complexity theory.

As we shall see, the applicability of the Block PRAM model to practical
issues in parallel computation extends far beyond the issues explicitly ad-
dressed in its design. In this thesis, we demonstrate that the Block PRAM
is an appropriate model for assessing the impact of communication latency,
contention, asynchrony and network failure on the implementation of PRAM
algorithms. The prospect of unifying these issues clearly motivates the study
of the Block PRAM model. However, we should first justify the specific char-
acteristics of the model, and so we devote the remainder of this chapter to
a detailed evaluation of the Block PRAM.

4.2.1 Latency, pipelining and granularity

The distinguishing features of the Block PRAM model are (1) the cost im-
posed for latency to shared memory and (2) the allowance for block pipelin-
ing. The result is a model that can quantify an issue which had not hitherto
been considered in the PRAM complexity theory, namely that of granularity.

Before defining granularity, let us first make some basic observations
about the model. The communication latency [, expressed as a multi-
ple of time steps, is a function of p, the number of processors. Clearly,
threw (75 P) € a2, 1) < (14 1) - thzpw (n, p) for all Block PRAM al-
gorithms A and all parameters n, p,l. Note that EREW PRAM algorithms
are also Block PRAM algorithms: we can choose to use the parameter [ as
part of the specification of A.

34




Definition.
Let A be a Block PRAM algorithm. The communication overhead of A
is defined by OvA(n,p,1) = thioa(n , )/ thrEw(m P)-

An access to shared memory may take up to [ + 1 times as long in the
Block PRAM model as in the EREW PRAM model. On the other hand, if
shared memory is always accessed in blocks of [ consecutive locations, block
pipelining can reduce the communication overhead to a constant factor.
Such algorithms are said to have good spatial and temporal locality of refer-
ence [5]: each processor’s shared memory accesses tend to be close together
in space and in time. They may also be called coarse-grained algorithms, as
we now explain.

The granularity of an algorithm [96, 114, 173] refers to the size of the
grains, or subtasks, into which computations have been divided for par-
allel processing. Fine-grained algorithms consist of relatively many small
or lightweight processes, each consisting of relatively few steps and com-
municating using relatively short messages or accesses to shared memory.
Coarse-grained algorithms consist of longer sequential processes which use
bigger blocks for communication. A

Data granularity refers to the length of the messages or blocks accessed
in shared memory by each process and corresponds to spatial locality. Pro-
cess granularity refers to the number of sequential steps in each process and
corresponds to temporal locality. From long experience in implementing sig-
nal processing algorithms on reconfigurable parallel architectures, Jamieson
observed qualitatively distinct effects from the two kinds of granularity [96].
Data granularity primarily affected memory structure, pipelining, hashing
~ and other issues related to communication latency; process granularity af-
fected all of these issues as well as synchronization requirements. Our theory
of granularity will quantify many of these relationships. However, it will not
model the distinction between data and process granularity, but instead will
model them together.

(Our description of granularity should be distinguished from the “prob-
lem of granularity in parallel memories” discussed in [116, 141, 186, 196].
This is actually the problem of contention in realizing the EREW PRAM
on parallel machines with relatively slow memory modules. As will be seen
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in Chapter 6, hashing, a possible solution to this problem, has the apparent
effect of reducing granularity, so there is an oblique connection between the
two uses of the word. However, in our view, to refer to the problem as
the “granularity problem” begs the question as to whether there are other
solutions.

(A more closely related use of the word “granularity” has been to refer
to the size of the individual processors and local memories in a parallel
computer [12]. However, the effect of this “granularity” on the complexity
theory still depends on the algorithm under study, and it is therefore more
instructive to study granularity as an algorithmic issue.)

Until very recently, the literature on granularity as a complexity issue
consisted of empirical performance analysis and specific case studies, notably
on interchanging the nested loops in linear algebra algorithms [22, 56, 70,
204]. Typically the communication overhead Ov#4, a value between 1 and
[ +1, varies with n and p as well as [, and an algorithm or problem may be
fine or coarse for different ranges of parameters. With a three-dimensional
space of parameters to explore for each algorithm, it is not surprising that
granularity was studied so long in the absence of a theoretical model.

The Block PRAM allows the issue of granularity to be studied in the
same frame of reference as the parallel complexity theory. In particular, we
can now give quantitative, architecture-independent definitions of granular-

ity.

Definitions.

Let A be a Block PRAM algorithm. Let the tuple (A, n,p,!) denote
an implementation of A for a problem of size n on a Block PRAM with p
processors and latency [. Then (A,n,p,!)is:

o fine if OvA(n,p,1) = Q(I);

e almost fine if OvA(n,p,1) = Q(I/logl);

e almost coarse if OvA(n,p,!) = O(log!); and

o coarse if OvA(n,p,l) = 0(1).

We choose to give names to these particular ranges for Ov* because
they predominate in our analysis throughout this thesis, and because the
resulting classification is simple and meaningful.
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Definition.

Let II be a problem for which there exists an efficient EREW PRAM
algorithm and let § C N3, Then II is:

e fine (almost fine) for (n,p,l) € § if for any efficient EREW PRAM
algorithm A and for all (n,p,!) € S, the implementation (A, n,p,!) is fine
(almost fine); and

e coarse (almost coarse) for (n,p,l) € S if there is an efficient EREW
PRAM algorithm A such that for all (n,p,l) € §, the implementation
(A, n,p,1)is coarse (almost coarse).

4.2.2 Exclusive memory access

The Block PRAM is essentially an EREW PRAM with adjusted costs for
accesses to shared memory. Since the CREW and CRCW PRAM models
also have an important place in the parallel complexity theory, we should
defend the choice of the exclusive memory access protocol.

o Empirical accuracy: Because of memory contention, it is unlikely that
block pipelining will continue to occur when block accesses overlap in ar-
bitrary patterns. In other words, having accepted block pipelining in our
model for whatever reason, we must commit to an EREW protocol.

e Theoretical simplicity. Algorithms and simulations which apply to
an EREW protocol will run on real machines under an EREW, CREW or
CRCW protocol.

e Theoretical power. The weak EREW protocol allows us to differentiate
between EREW, CREW and CRCW PRAM algorithms when we try to
implement them in the Block PRAM model. It also forces us to consider
the problem of providing for memory contention alongside the complexity
of algorithms.

4.2.3 Unbounded memory

As in the PRAM model, the Block PRAM shared memory and local memo-
ries are unrestricted in size. This allows us to focus on the structural aspects
of efficient algorithms and lower bounds, resulting in a clearer presentation.

Most of our complexity results being asymptotic, we assume that mem-
ories will be built and managed to scale up with the number of processors
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and the space requirements of algorithms. We assume that long contiguous
arrays will always be available to our algorithms, deferring the important
and nontrivial problem of on-line parallel garbage collection and compaction
to another study, e.g. [91]. Accordingly, from our point of view, limits on
memory size will serve only to limit the range of applicability of our algo-
rithms. Conversely, our lower bounds will apply to machines with memories
of any size.

4.2.4 Explicit parallelism/explicit memory addressing

Parallel algorithm design is not yet automatic. It is often difficult, given a
fast sequential algorithm, to produce an efficient parallel algorithm. Par-
allelizing compilers have been designed with the purpose of automatically
finding and exploiting parallelism in sequential programs, so that they can
run on parallel computers [13]. However, years of research have found many
data structures and techniques in efficient parallel algorithms which do not
appear in standard sequential algorithms [76]. Unless parallelism is specified
in an algorithm, we cannot be certain that it will be found and exploited at
runtime. For this reason, all theoretical models of parallel complexity require
that parallelism be specified explicitly. The Block PRAM is no exception.

Similarly, clustering,! the combining and scheduling of primitive parallel
operations together into subtasks according to spatial and temporal local-
ity, is not yet automatic. Vectorizing compilers have been designed with
the purpose of automatically finding and exploiting contiguous array data
structures in parallel programs, so that they can run on vector computers
[31, 117]. However, research on the Block PRAM model has found many
data structures and techniques for clustering which do not appear in stan-
dard PRAM algorithms; see [5] and Chapter 5. Unless clustering is specified
in an algorithm, we cannot be certain that it will be found and exploited at
runtime. For this reason, any parallel complexity model that accounts for
spatial and temporal locality must require that clustering is specified by the
algorithm designer or programmer.

In the Block PRAM model, clustering occurs when a processor accesses
a block of consecutive memory addresses, and so we require that the shared

!Also called “vectorizing” [31, 117] and “flattening” [31].
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memory be addressed explicitly. Since the Block PRAM shared memory
is unbounded and algorithms are designed to work on data structures of
specified size, Block PRAM algorithms address the shared memory through
user-defined arrays. This entails two assumptions:

e Disjoint arrays of arbitrary size consisting of locations with consecutive
logical addresses can be allocated in the shared memory space.

e Shared memory locations can be addressed according to their positions
in the relevant array.

By identifying frequently occurring structures and techniques for par-
allelizing (e.g. binary trees, shortcutting) and clustering (e.g. l-ary trees,
rational permutations), parallel complexity models can contribute to the
development of effective compilers. Because clustering is performed on pro-
grams that are already parallelized, clustering may be viewed as a “fine-
tuning” compiling problem and is probably easier in general than paralleliz-
ing. Therefore, we may expect the development of general purpose clus-
tering compilers, aided by a clear theory of Block PRAM algorithms and
lower bounds, to precede the development of general purpose parallelizing
compilers by many years. (See [136] for a discussion of clustering compilers
in a programming context.)

4.2.5 Two-level block-hierarchical shared memory

The processors in the PRAM model communicate with each other, and
with the user, through the shared memory. The alternative way of model-
ing interprocessor communication is message passing. Detailed comparisons
between the shared-memory and message-passing paradigms can be found
in [15, 76]. The general consensus is that software development is easier
for shared-memory models, and that hardware implementation is easier for
message-passing models. Since we are engaged in the bridging of theory and
practice, the most significant point for our purposes is that the vast majority
of parallel algorithms in the theory literature have been designed for shared-
memory models. We wish to learn how to implement these algorithms in
practice, and so it is appropriate for us to study a practical shared-memory
model.?

21t should be noted that the Block PRAM model, by allowing block pipelining, offers
the best representation in a shared-memory model of message-passing machines which
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The Block PRAM shared memory is hierarchical, and a unique char-
acteristic of the Block PRAM model is the formulation of that hierarchy.
In a computation model with hierarchical memory [2, 3, 4], each processor
views the memory as consisting of various levels, according to the difficulty
of performing an access to each location; each processor may have a differ-
ent point of view. For example, in a sequential model, the levels may range
from computing registers through various levels of cache to main memory,
extended memory, various kinds of disks and mass storage. A parallel pro-
cessor might also include levels for the local memories of other processors at
varying distances from it in the network, and /or distinct levels for local and
shared memory. In such a hierarchical memory model, a read or write by a
processor to a location is subjected to a delay (possibly zero) depending on
the level of the hierarchy to be accessed. In a hierarchical memory model
with block transfer (or block-hierarchical memory model for short), when a
block of consecutive locations is accessed, the delay is only charged once,
e.g., for the first location accessed.

It should be clear from the definition that the Block PRAM is a two-
level block-hierarchical shared memory model. Because it does not model the
memory hierarchy of any network topology, the Block PRAM is said to be an
architecture-independent model of parallel computation. Algorithms can be
designed for the Block PRAM model without regard to the interconnection
structure of the target multiprocessor network, and our conclusions apply
equally well to architectures based on hypercubes, butterflies and meshes.

4.2.6 Network congestion

The price of architecture independence is that the Block PRAM cannot
model the pattern of traffic flow in the network. The flat charge of [ time
units for a given processor to perform a non-local memory access does not
take into account the possibility that the data may have to travel through
heavily congested wires in the network. This results in a significant discrep-
ancy between the Block PRAM model and current-generation massively
parallel machines. We believe that this gap has been primarily responsible
for the fact that the Block PRAM model appears to have been abandoned

allow long messages (e.g. [24]). A message-passing variant of the Block PRAM is described
in Section 7.1.
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in the literature in the two years since its first appearance in [5]. In this
thesis, we present two approaches to closing this discrepancy: minimizing
the effect of network congestion, and modeling specific deterministic routing
problems.

e First, we argue that congestion can be minimized by the use of ran-
domized routing. As we discussed in Section 3.3.3, randomized algorithms
can guarantee congestion-free routing of permutations with high probabil-
ity. Recent algorithms [9, 126] even support the efficient routing of large
message packets, corresponding to block transfers of shared memory. How-
ever, permutations represent highly uniform (bijective) patterns of memory
access. To support general patterns of memory access with randomized
routing, the shared memory space has to be randomly hashed so that the
distribution of memory requests is nearly uniform. Hashing has the ap-
parent effect of destroying spatial locality, thereby striking at the heart of
the Block PRAM model. Earlier this year, Heywood and Ranka [89] com-
mented: “One drawback to current PRAM simulation techniques is that
they obliterate (through hashing) any natural communication latency that
may be present in an algorithm.”

We show in Chapter 6 that this is not necessarily the case, by exhibiting
a universal family of hash functions with optimal locality. Subject to rea-
sonable conditions, these functions can be performed and inverted efficiently
with almost coarse granularity. If the memory space of a real machine is
hashed using a random function in this family, a block access instruction
can be supported using large-packet randomized routing; see Chapter 7.
In other words, randomized routing can be used to minimize the effect of
network congestion on the complexity of many Block PRAM algorithms.

e Second, we argue that deterministic network routing problems can be
modeled reasonably well on the Block PRAM. The permutations most often
studied in the literature [128, 147, 157, 167] as network routing problems
are rational permutations.® A permutation II on {0,1,...,2% -1} = {0,1}*
is rational if it can be expressed as a permutation 7 on the bit positions;
Le., if I(Z1,...,2k) = (Tp(1)s - - .3 (k) )- Matrix transpositions and perfect
shuffles are examples of rational permutations.

3The use of the word “rational® was introduced in [4]. The permutations are called
“Frequently Used Bijections” in [128] and “admissible mappings” in [157].
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In Chapter 5, generalizing work in [5], we give optimal bounds for the
Block PRAM complexity of performing all rational permutations. Standard
deterministic permutation algorithms on networks [27, 128, 147, 157, 167,
184, 185], and the optimal Block PRAM permutation algorithm [5] amount
to factoring an arbitrary permutation into a product of rational permuta-
tions. We conclude that for practical purposes, our state of knowledge about
deterministic routing in the Block PRAM model is about as good as it is for
network models, and we are able to draw comparisons and contrasts between
these complexity theories.

4.2.7 Logarithmic word size

In shared-memory models of parallel computation, word size is the number
of bits stored in each shared memory cell. An access to a shared memory
location is assumed to make all of these bits available for processing, and
a basic unary or binary local instruction on words is assumed to take unit
time. It is not surprising, then, that models with large word size can be
asymptotically more powerful than models with small word size. For exam-
ple, Bellantoni has recently exhibited a hierarchy of CRCW PRAM models
based on word size [29]. This paper includes the result that computing
the MOD; function on n inputs (see Section 9.2) requires Q(logn/ loglog n)
time on Priority CRCW PRAMs with O(1) word size, compared with the
best known lower bound of Q(log'/?n) on Priority CRCW PRAMs with
unbounded word size [129], regardless of the number of processors and the
overall size of the local and shared memories. Therefore, it seems important
to fix the word size when defining a complexity model.

Although PRAMs with O(1) word size can be used for general purpose
parallel computing, e.g. by simulating Boolean circuits (see Section 4.2.8)
[183], almost all of the PRAM algorithms in the literature assume a word
size of Q(logp). (Usually the word size is not even specified and is assumed
to be unbounded.) Graphs, linked lists and permutations, as well as many
database and optimization problems, are normally specified as arrays of
integers in the range [0...p"] for some positive constant k, and PRAM
algorithms using these data structures manipulate these integers as words.
For these applications, a word size of ©(log p) is also sufficient.

Except in research such as [29, 154, 179] specifically studying the effect
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of word size on the complexity theory, it is not standard practice for a paral-
lel complexity model to have a fixed word size. Even the original definition
of the Block PRAM model [5] does not restrict word size. We believe that
this omission belies the central purpose of the Block PRAM: modeling com-
munication latency and pipelining. In practice, a word that is longer than
the word size of a machine must be expressed as an array of smaller words
[31, 91]; therefore, the effect of block pipelining in practice corresponds most
closely to a complexity model with fixed word size. It is therefore essential
to restrict the word size if we are to have a realistic complexity model for
latency.

Fixing the word size is also necessary in this thesis if we are to dis-
cuss meaningfully any practical issues relating to contention, bandwidth or
pipelining—or the rate of communication in general—since the relevant the-
oretical measure is words per time unit, and the relevant real measure is
bits per second. It should also be considered that real machines have O(1)
word size, and it is far easier to implement algorithms on them if their word
size is bounded [91]. Our choice of O(log p) word size applies to most paral-
lel algorithms’in the theoretical literature and results in the simplest, most
general, most rigorous Block PRAM complexity theory possible.

4.2.8 Restricted arithmetic instruction set

The instruction set of a unit-cost RAM is a list of the operations it can
perform on words in unit time. Most parallel complexity models in the lit-
erature fail to specify an instruction set for their constituent RAMs, taking
the view of [7] that “the exact nature of the [instruction set] is not too
important, as long as the instructions resemble those usually found in real
computers.” However, as [11, 154, 183] argue, the arithmetic operations al-
lowed by instruction sets can vary in power, greatly affecting the complexity
of algorithms. Parberry [154] describes five arithmetic instruction sets for
RAMs, in increasing order of power:

e Minimal: Addition, subtraction, and shifts of a single bit (multiplica-
tion and division by 2).

*The theory can be extended to other word sizes. In Section 7.4 we consider the effect
of multigauging, or changing the word size, on the Block PRAM model.
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o Restricted arithmetic: The above, and also shifts of arbitrary length
(multiplication and division by powers of 2).

e Full arithmetic: The above, and also multiplication and integer divi-
sion.

e FEztended arithmetic: The above, and also exponentiation.

e General: Any operation which can be performed by a sequential com-
puter (e.g. a unit-cost RAM with any of the above instruction sets) in time
polynomial in the size of the operands.

Which of these sets, if any, is appropriate for the RAMs which make up
the Block PRAM model? If the word size were O(1), there would be no basis
for comparison: any of the above arithmetic operations could be performed
sequentially in constant time. With a O(logp) word size, however, differ-
ences in power appear: clearly, the general instruction set is asymptotically
more powerful than the minimal instruction set.

The most natural way to quantify these distinctions is with the theory
of Boolean function complexity. The realization of Boolean functions by
logic and algebraic circuits has been a long-standing concern in electronic
engineering. Recently, the study of Boolean function complexity has been
motivated by its close relationship to the structural complexity theory. (For
example, Turing machines can be efficiently simulated by Boolean circuits,
and so lower bounds on circuit size may lead to a proof that P # AN'P.)
Because of its generality and robustness, Boolean function complexity has
emerged as a topic of fundamental importance in the theory of computation.
For surveys of Boolean function complexity, see [59, 202].

Definitions.
Let By denote the set of n-ary Boolean functions f : {0,1}" — {0,1}.
An Q-circuit on inputs X = {x1,%2,...,2,} is a finite collection of gates,

which may be represented as the nodes of a connected acyclic directed graph
G = (V,A), with X C V. In such a representation, each node v; € V\X is
assigned a (Boolean) basic function w; € QN By (;) and some ordered n(%)-
tuple (u1,u2,...,Uy(;)) of predecessors, where {u1,u2,..., Uy} ={u €V :
(u,v) € A}.

By res,; : {0,1}" — {0, 1} we denote the Boolean function computed at
node v;, defined inductively for y € {0,1}":
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® resg;(Y) = ¥i3

o resy;(y) = wi(resy, (¥),Tesu, (y), . - ., TeSu, ., (y)) for v; € V\X.

The output of the circuit is some distinguished node wg. The circuit
computes the Boolean function res,,.

The size of the circuit is |V|, the number of gates or nodes. The depth
of the circuit is the length of a longest directed path to the output node.

A formula is a circuit in which every gate has fanout (outdegree) omne.

The key complexity measures of Boolean functions are circuit size, circuit
depth and formula size. Research on the complexity of specific problems
has included bounds for each of these measures over the bases By, U; =
{A@ v@5 2y U, = (AP, vm) i m e N oand m > 2}, My = Up\-,
M, = U,\~, and {NAND}. Other important work has included finding lower
bounds on the size of constant-depth and planar circuits. Unless otherwise
specified in this thesis, we will will understand circuits to be over the basis
U,.

As observed in [154], the circuit size complexity of a Boolean function
is (asymptotically) equal to the complexity of computing the function on a
unit-cost RAM with a minimal instruction set and word size 1. In multi-
ple precision arithmetic applications such as cryptography [203], the circuit
size complexity of an operation is referred to simply as its “complexity,”
“bit complexity” or “bit serial complexity.” Table 4.1 gives the best known
bounds on circuit size, for n-bit inputs, for each of the operations in Par-
berry’s taxonomy of instruction sets. It can be seen that the bounds cor-
respond roughly to the increasing levels of power in the taxonomy, and in
particular, that multiplication and integer division are indeed more advanced
RAM operations than addition and subtraction.®

We use the circuit size, then, to describe an operation’s power as a mem-
ber of an instruction set. Having adopted this criterion, it makes sense for
us initially to define the Block PRAM model with the restricted arithmetic
instruction set. This will have the effect that all of the basic instructions

*U, is usually defined as U, = B;\{=,®}. This definition and ours have been shown
to be equivalent with respect to depth and asymptotically equivalent with respect to size
in [134].

5Similar objections to multiplicat ion as a basic instruction have been put forward by
Blum [32] and Parberry [153].
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| Operation | Circuit Size Bound |

Addition, subtraction O(n)

Shifts of arbitrary length | ©(n)

Multiplication O(nlognloglogn) [174]
Integer division O(nlognloglogn) [16]
Exponentiation O(nlognloglogn) [16]
General (polynomial-time) | n°(1) [160]

Table 4.1: Circuit size of proposed basic instructions

can be performed sequentially with bit operations in time linear in the word
size, or logarithmic in the maximum numerical value of a word.”

When it is desirable to do so, we will augment the instruction set, and
so indicate. For example, in Chapter 5, describing algorithms for matrix
multiplication or the Fast Fourier Transform, we will refer to “the Block
PRAM model with multiplication” rather than explore the fine structure
of integer multiplication. In Chapter 7, we will define corner turning, a
natural but non standard instruction for the Block PRAM model, and its
practicality will be defended in part by the fact that it has linear circuit size
complexity.®

4.2.9 Synchronous, fault-free

The basic Block PRAM is synchronous, and free of network and processor
failures. In Chapters 8 and 10 we show how Block PRAM algorithms can
be implemented in the presence of asynchrony and network failures, respec-
tively. In this way we are able to consider the effect of each of these practical
issues, in turn, on the basic model.

"This means that to use the alternative “log-cost” charge for a RAM instruction [7]
would also be correct in terms of bit complexity, rather than only approximately correct
as in the case of multiplication. Our criterion is also consistent with the “semilogarithmic-
cost” charge [97], for all polynomial-time computations. '

® Another criterion, realization by polynomial size and constant depth circuits with un-
bounded fan-in, is proposed in [183] in order to relate PRAM time and circuit depth. This
also has the effect of excluding multiplication and recommending the restricted arithmetic
instruction set. We could adopt this criterion without affecting any results or conclusions
in this thesis. For example, corner turning satisfies this constant-depth criterion as well.
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4.2.10 SIMD

Like the PRAM, the Block PRAM is a Single Instruction stream/Multiple
Data stream (SIMD) model of parallel computation. “Multiple data stream?”
means that the processors can work simultaneously on distinct sets of data.
“Single instruction stream” means that during each time step, every proces-
sor is either executing the same instruction or waiting. Single instruction
stream models are necessarily synchronous.

In Multiple Instruction stream/Multiple Data stream (MIMD) models,
e.g. the Asynchronous PRAM (Chapter 8), each processor has its own pro-
gram, which it executes autonomously. Multiple instruction stream models
are generally asynchronous, but usually they allow algorithms to implement
some kind of synchronization operation (at some cost). Since MIMD al-
gorithms can exhibit more general behavior than SIMD algorithms, MIMD
models are considered to be more general purpose than SIMD models. (This
distinction need not manifest itself in the complexity theory: if we allow the
processors in an SIMD model to interpret their local memories as instruc-
tions, it can simulate an MIMD model with only a constant factor increase
in time [91].)°

SIMD algorithms are also more efficient than MIMD algorithms, writes
Hillis [91], “for well-structured problems with regular patterns of control ...
because more of the hardware is devoted to operations on the data.” Because
of the preponderance of research on the PRAM model, we should expect
that most efficient parallel algorithms in the complexity theory literature
are “well-structured” and, according to Hillis, best suited to SIMD-style
programming.

We give strong theoretical support for Hillis’s assertion. In Chapter 8,
we will see that most of the benchmark problems for the (MIMD) Phase
LPRAM model in Gibbons’s thesis [76]—prefix sums, Fast Fourier Trans-
form, bitonic sorting and matrix multiplication—can be solved within the
same time bounds by generically simulating the corresponding Block PRAM
algorithms (Chapter 5).1° An important exception, list ranking, occurs be-

®The other possibilities in this taxonomy, due to Flynn [65], are SISD and MISD. SISD
models are sequential. MISD models apply to a very limited range of problems; see [11].

197t is important to note that no such generic method exists for obtaining Block PRAM
algorithms from Phase LPRAM algorithms on the Block PRAM, because the Phase
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cause the Block PRAM models block pipelining and the Phase LPRAM
does not. In other words, the proponents of MIMD complexity models have
found it difficult to exhibit an advantage in return for the added difficulty
of MIMD-style programming. |

In comnclusion, we should try to specify efficient parallel algorithms in
SIMD models whenever possible. If we also seek to address practical issues
in parallel computation, the Block PRAM, an SIMD model which can be
adapted to capture many practical issues including asynchrony, is an ideal
model for the task. This is the work of the next chapter.

LPRAM allows arbitrary pipelining.
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Chapter 5

Problems and data
structures

This chapter presents algorithms and lower bounds for solving several spe-
cific problems on the Block PRAM model. The results appear in sections
according to the predominant data structure associated with each problem.
Table 5.1 is a guide to the organization of this chapter.

5.1 Permutations of arrays

The natural data structure in the Block PRAM model is the user-defined
array, consisting of a block of shared memory locations with consecutive
logical addresses. Data in the Block PRAM shared memory is addressed
according to its location in the relevant array. To exploit locality, it may be
necessary to permute the data in an array.

In this section, we study the complexity of performing specific permu-
tations on the Block PRAM model. As in [5], it is assumed that the per-
mutation to be performed is known in advance, so that the only operation
required is the movement of the array data in the shared and local memo-
ries. The resulting algorithms are said to be conservative. A computation
is conservative if the only operation allowed is that of copying elements in
memory.

For convenience throughout this section, we assume p and [ are integral
powers of 4, affecting our bounds by at most a constant factor.
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| Section | Data structure | Problems |

5.1 Array Permutations of arrays
5.2 Binary tree Prefix sums computations
Binary tree Integer sorting

5.3 Linked list List ranking

5.4 Expression tree | Tree contraction

5.5 Graph Graph connectivity

5.6 String String matching

5.7 Butterfly Fast Fourier Transform

5.8 Matrix Matrix multiplication
Sorting network | General sorting

Table 5.1: Problems studied in this chapter

We study four classes of permutations, in increasing order of generality:
rational, dihedral, linear and arbitrary permutations.

5.1.1 Rational permutations

Definition. [4]

A permutation IT on {0,1,...,2%¥ — 1} = {0,1}* is rational if it can
be expressed as a permutation 7 on the bit positions; i.e. II(z1,...,2;) =
(Zx(1)s« - +»Tn(k)). By convention, we write the most significant bit first. If
a rational permutation is denoted by a capital Greek letter, we denote its
associated bit permutation by the corresponding small Greek letter.

Definition.

Let TI be a rational permutation on {0, 1,...,2%—1} with bit permutation
7. Denote K = {1,...,k},C = {1,...,logp},and F = {k—logl+1,...,k}.
Let CII) = {i € C : n(i) ¢ C} and F(II) = {i € F : (i) ¢ F}. Define
c(II), the coarse crossing number of I, by ¢(II) = |C(II)| and f(II), the fine
crossing number of II, by f(II) = |F(II)|. Define u(II), the crossing number
of I, by (1) = min(e(IT), £(I1).
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Theorem 5.1.

Let II be a rational permutation. The complexity of performing II con-
servatively on n = 2¥ consecutive locations in shared memory is

o O(n/p + nu(I)/(plog(2n/pl))) if pl < n;

o O(l + lp(1M)/ log(2pl/n)) if pl > n. m]

Lemma 5.2.

Let II be a rational permutation. IT can be performed conservatively on
n = 2% consecutive locations in shared memory in time

« O(n/p + nu(IT)/(plog(2n/pl))) if pl < n;

o O(l + lp(I)/ log(2pl/n)) if pl > n.

Proof.

Case 1: pl < n. We may assume pl < n/2, affecting our bounds by at
most a constant factor. We perform a sequence of basic rational permuta-
tions of one of the following forms:

e Rational permutations ¥ where o(i) = ¢ for ¢ € C. Each processor
reads and permutes a block of size n/p and writes it back.

¢ Rational permutations ¥ where o(i) = ¢ for ¢ € F. Each processor
reads n/pl blocks of size | and writes them into their new locations.

Fach basic permutation can be performed in time O(n/p).

Assume c(II) < f(II); the case f(II) < ¢(II) is analogous. Let § =
K\(CUF)# 0. In one basic permutation, any |S| (or fewer) bit positions
can be moved from C'(II) into S; in a second basic permutation, they can be
moved to their images under 7. When all of C'(II) has been moved in this
way, two more basic permutations suffice to map the remaining positions in
C and K\C to their images under . The number of basic permutations
required is 2[¢(I)/|S|] + 2 = O(e(11)/ log(2n/pl)).

Case 2: pl > n. Similarly to Case 1, assume pl > 2n. We use the same
basic permutations as above. Each basic permutation can be performed in
time O(!).

Assume ¢(II) < f(I); the case f(II) < ¢(II) is analogous. Let T =
CNF # (. In one basic permutation, any |T| (or fewer) bit positions
can be moved from 7~1(C(I)) into T in a second basic permutation, they
can be moved to their images under 7. When all of #~1(C(II)) has been
moved in this way, two more basic permutations suffice to map the remain-
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ing bit positions in C' and K\C to their images under ». The number
of basic permutations required is 2[|7=Y(C(I)|/|T[] = 2[e¢(I)/|T[] + 2 =
O(c(IT)/ log(2pl/n)). O

The proof of many lower bounds in this thesis is based on a potential
function argument first used in [5] to prove a lower bound for transposing
a square matrix on the Block PRAM. The argument can be stated in the
following definition and lemma.

Definition.

Let A = {0,1,...,n—1}, let m|n and let A be divided into n/m segments
Ao, ..., Apm—1 each of length m: A; = {im,...,(3 + 1)m — 1}. Let II be
any (not necessarily rational) permutation on A. For 0 < r,s < n/m—1, let
zr,5(Il, m) = |II(A;) N A4|. (2,511, m) denotes the number of elements that
are mapped from A, to A,.) Define ®(II, m), the m-wise potential of I, by
®(Il,m) = Zgﬁl_’:“l ?__/__73"1 gt (I, m)log &}t (I, m) (the sum is taken over
positive z, , only).

Lemma 5.3. [5]

Let II be any (not necessarily rational) permutation on {0,1,...,7—1}.
Any conservative algorithm for performing II on n consecutive locations in
shared memory requires time

e Q(n/p+ (nlogl — ®(11,1))/(pllog(2n/pl))) for pl < n and I < p;

e Q(n/p+ (nlogp — (1L, p))/(pllog(2n/pl))) for pl < n and p < I;

e QI + I(nlog(n/p) — ®(1,n/p))/(nlog(2pl/n))) for pl > n and [ < p;
and

e Q(I+I(nlog(n/l)— @(,n/l))/(nlog(2pl/n))) for pl > nand p< [. O

Lemma 5.4.

Let II be a rational permutation on {0,1,...,n} with n = 2%, Let m = 27
with § < k. Let G(m) ={k—-j+1,...,k},let G(I,m) = {i € G : w(¢) ¢
G(m)} and let g(II, m) = |G(II, m)|. Then ®(I,m) = nlogm — g(IL, m).
Proof.

Let 7,5 € {0,...,287 — 1} = {0,1}*7. Then by a simple counting
argument,
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z, (I, m) = |TI(A4,) N 4,]

= 0 if there is an ¢ with 1 < ¢, 7(¢) < k — j and (%) # s(7(8));

= 2/=9Ilm) otherwise.

Moreover, for a given s, there are exactly 29(m) choices of r for which
., 5(II, m) is nonzero. Hence
B(IL, m) = Yole ™! e o (11, m) log et (11, m)

- zgi_ w1 9o(Tlm)(9i=a(Mm) Jog 2i-g(Tm))

= (n/m)2(j ~ ¢(IL,m))

= nlogm — g(II, m). O

Corollary 5.5.

Let II be any rational permutation on {0,1,...,n — 1}. Any conserva-
tive algorithm for performing II on n = 2* consecutive locations in shared
memory requires time

° Q(n/p+ nu(Il)/(plog(2n/pl))) if pl < n; :

o QI + Iu(IT)/ log(2pl/n)) if pl > n. O

This completes the proof of Theorem 5.1.

Corollary 5.6.

The complexity of transposing an a X b matrix conservatively on n = 2%
consecutive locations in shared memory is

¢ O(n/p + nlogmin(p,!,a,b)/(plog(2r/pl))) if pl < n;

e O(! + llogmin(p,!,a,b)/log(2pl/n)) if pl > n. O

5.1.2 Dihedral permutations

Definition. ’

A permutation II on {0,1,...,2% — 1} = {0,1}* is dihedral if there is
an offset vector @ € {0,1}* and a permutation 7 on the bit positions such
that (21, ...,2%) = (Tx) © @1y -+, Tr(k) D ax). (@ is the bitwise exclusive-
or operation.) The rationalization of a dihedral permutation II with bit
permutation 7 is the permutation Il defined by Ho(z1,.. .,a:,,(k)).l

1The class of dihedral permutations is also called the class F [147] or the class BPC
[167].
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All of the notations and definitions related to rational permutations can
be extended naturally to dihedral permutations II through their rationaliza-
tions.

Lemma 5.7.
Let II be a dihedral permutation on {0,1,...,2 — 1} and let IIp be its
rationalization. Let (1L, n, p,[) (resp. ¢(Ilg, n, p, 1)) denote the complexity of

performing II (resp. Ilp) on » = 2* consecutive locations in shared memory.
Then #(IL, =, p, ) = ©(t(Ilo, m,p, 1)).

Proof.

Let a be the offset vector for IIg. Any dihedral permutation can be
transformed into its rationalization by applying two basic permutations,
each taking time O(n/p +1).

e The first permutation applies the offsets given by the last log [ locations
of a. Each processor reads and permutes n/pl blocks of size [ and writes
them back.

o The second permutation applies the offsets given by the first £ — log!
locations of @. Each processor reads n/pl blocks of size [ and writes them
into their new locations. o

Corollary 5.8.

Let II be a dihedral permutation. The complexity of performing II con-
servatively on n = 2* consecutive locations in shared memory is

¢ O(n/p + nu(Il)/(plog(2n/pl))) if pl < n;

e Ol + lp(ID)/ log(2pl/n)) if pl > n. o

The crossing numbers of some frequently used examples of dihedral per-
mutations are evaluated in Table 5.2. For convenience, we assume k is even.

5.1.3 Linear permutations

Definition.
A permutation IT on {0,1,...,2% — 1} = {0,1}* is linear if there is a
nonsingular k X k 0-1 valued matrix M and an offset vector @ € {0,1}* such
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Permutation II | = | p(ID)

Identity [1,...,k 0

Vector reversal [1,...,k 0

Exclusive-or [1,...,%] 0

Perfect shuffle [k, 1,...,k=1] 1

J-th power of shuffle k—ji+1,...,k—j] log min(p, I, 2141, 2814l
a X b matrix transpose [k—loga,...,k —loga—1] | logmin(p,{,a,b)
Square matrix transpose | [k/2,...,k/2 1] log min(p, )

Bit reversal [k,...,1] log min(p, 1)

Bit shuffle [1,3,...,k—1,2,4,..., k] log min(p, )
Shuffled row-major [1,k/241,2,..., k] log min(p, 1)
j-way shuffled row-major | [1,k/j+1,2k/j+1,...,k] | logmin(p,I)

Table 5.2: Crossing numbers of some dihedral permutations

that II(z) = Mz + a. (All matrix arithmetic is modulo 2.) If & is the zero
vector the permutation II is homogeneous linear. '

Theorem 5.9.

Let II be a homogeneous linear permutation. II can be performed con-
servatively on n = 2% consecutive locations in shared memory in time

e O(n/p+ nlogmin(p,1)/(plog(2n/pl))) if pl < n;

e O(l + llog min(p, 1)/ log(2pl/n)) if pl > n.

Proof.

We give the proof for the case pl < n, [ < p; the other cases are analogous.
Let M be the matrix for II. We recall that any nonsingular square matrix
M can be factored into the form LU P, where L is a lower triangular matrix,
U is an upper triangular matrix, and P is a permutation matrix (e.g. see
[66]). We can perform the permutation Mz by successively applying P, U
and L to z. We show that each of these permutations can be performed
within the stated time bounds. |

An application of P is just a rational permutation; the bounds follow
from Theorem 5.1.

Let I denote the k X % identity matrix. We show how to decompose U
into a product of nine matrices, each of which represents one of the following
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Using an argument similar to the proof of Lemma 5.7, the result can be
extended to non-homogeneous linear permutations.

Corollary 5.10.

Let II be a linear permutation. II can be performed conservatively on
n = 2F consecutive locations in shared memory in time

o O(n/p+ nlogmin(p,!)/(plog(2n/pl))) if pl < n;

e O(l + llog min(p, 1)/ log(2pl/n)) if pl > n. O

5.1.4 Arbitrary permutations

Theorem 5.11. [5]

Any permutation II can be performed conservatively on n consecutive
locations in shared memory in time

o O(min(n!/p, nlogp/(plog(2n/pl)))) if pl < n;

o O(min(nl/p,llog(n/l)logmin(p,!)/(logllog(2pl/n))) if pl > n.

Proof sketch.

Each processor can move [n/p]| elements one at a time within time
O(nl/p).

For the nontrivial bound, we recall that any permutation of the entries
of a matrix can be performed in three phases by executing permutations on
the rows, the columns, and the rows again. For the case pl < n, we take
the n items to be a p X n/p matrix stored in row-major order. For the case
pl > n, we use a n/l x | matrix. Each permutation on the rows can be
performed in time O(n/p+1!). To perform the permutation on the columns,
we transpose the matrix between phases and apply the algorithm recursively
in parallel. m|

The following lower bound shows that for almost all permutations, the
above algorithm is optimal in the case pl < n.

Theorem 5.12. [5]

There is a permutation Il on n elements such that any conservative
algorithm for performing II on n consecutive locations of shared memory
requires time Q(min(nl/p, nlogp/(plog(2n/pl)))) for pl < n. O
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For our purposes we will require the following slightly stronger version
of the theorem.

Theorem 5.13.

Let S, be the set of all permutations on {0,1,...,2 — 1}. Then there
is a subset £ C S, with log|E| = o(nlogn) such that for all Il € S,\FE,
any conservative algorithm for performing II on any n locations in shared
memory requires time Q(min(nl/p,nlogp/(plog(2n/pl)))) for pl <n. 0O

The proof of this stronger version is easily obtained from the original
one given in [5], if we note that:

¢ The lower bound can be applied to permutations of any n locations in
shared memory, not necessarily consecutive. This can be seen by generalizing
the notion of a “segment” to be a contiguous block of memory containing [
of the elements to be permuted.

e The number of “easy” permutations can be bounded. This is because
the proof is a counting argument bounding the number of different permu-
tations that can be attained by a Block PRAM within a given time bound.

5.2 Balanced trees

The balanced binary tree is a fundamental structure in parallel computation:

e Consider the problem of adding » numbers. The numbers can be placed
at the leaves of a balanced binary tree, and the additions can be performed
by parallel computation as follows. At each level of the tree, numbers are
added together in pairs by different processors in parallel and communicated
to the next level. If there is no communication latency, the computation can
be performed by n processors in the same time as O(logn) sequential binary
additions.

e Consider the problem of broadcasting a datum to p processors. The
processors can be placed at the leaves of a balanced binary tree, and the
broadcasting can be performed by parallel computation as follows. At each.
level of the tree, the datum is copied to both nodes on the next level. If
there is no communication latency, the computation can be performed by p
processors in the same time as O(logp) single copying steps.
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When there is substantial communication latency, the balanced binary
tree is no longer the natural structure for these parallel computations. Be-
cause each level of the tree represents a communication step, it is desirable
to use a tree with fewer levels. For many computations with communica-
tion latency [, the balanced l-ary tree is the best choice. For n leaves, a
balanced [l-ary tree gives computation time O(llogn/log!), improving the
time of O(llogn) for the binary tree. We illustrate this technique in this
section with important algorithms and lower bounds for the Block PRAM.

5.2.1 A general lower bound

A function f(21,...,2,) is sensitive on all its variables if there is a data
instance z; = a1,...,2, = a, such that for each 7, 1 < 7 < n, there is a
b; with f(ay...,a:i...,0,) # f(@1,-..,b...,a,). The following result is
stated without proof in [5]. We supply a proof in the spirit of [179].

Theorem 5.14. [5]
Let f(z1,...,2,) be sensitive on all its variables. Then any Block PRAM
algorithm computing f requires time Q(n/p+ llogn/logl).

Proof.

Let W be a Block PRAM algorithm that computes f(A) for the array
A consisting of the first n locations of shared memory. We can make the
following simplifications while increasing the running time of W by at most a
constant factor: the algorithm executes in alternating read rounds and write
rounds. During a read round each processor may read at most [ locations
of shared memory; during a write round each processor may write into at
most [ locations of shared memory. Each round takes time at least /.

We use the following data dependency argument.? After each round, to
each shared memory location and processor we assign a subset of {0,...,n—
1} corresponding to the entries of A it has “sensed.” At termination, the
shared memory location containing f(A) must have “sensed” all n entries
of A, and the corresponding set must have cardinality n.

More formally, let the shared memory have N > n (initialized) locations.
We define R(¢,7), P(j,7) inductively for 1 < i< n, 1< j<p,r>0

2 Also called a “fan-in” or “fan-out” argument.
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as follows. As the algorithm begins, let R(¢,0) — {i} for 0 < i< n -1,
R(%,0) « Bforn < i < N—1and P(j,0) « @ for 1 < j < p. During the r-th
read round, for r > 1and 1 < j < p,let P(j,7) « P(j,r—1)UU{R(¢,7—1):
Processor j reads memory location ¢ during the r-th read round}. During
the r-th write round, for r > 1 and 0 < i < N —1 let R(¢,7) « P(j, 7 — 1)
if some processor j writes into memory location ¢ during the write round;
otherwise let R(i,r) « R(i{,7 — 1). It is easy to verify that after the r-th
write round, memory location ¢ is a well-defined function on the variables
{A(j)+ € R(i,)}.

Let M(r) = max;{|R(¢,7)|}. Since at most [ locations of global memory
can be accessed during a round, M (1) <!+1and M(r) < (I+1)- M(r-1).
Since the output value must be sensitive on n variables, the algorithm W
can terminate only when M(r) > n; hence at least logn/log(l + 1) write
rounds are required.

Finally, we observe that computing any nondegenerate function on n
variables requires time Q(n/p). The theorem follows. ]

5.2.2 Prefix sums computations

Let @ be an associative binary operation with identity 0 that may be com-
puted sequentially in O(1) time. The prefiz sums @ computation takes an
array A = (ao, a1, a,...,0,-1) and returns the array (ag, ao® a1, a0 ® a; ®
az,...,a00a1 D a2®- - Pan—1). I @ is addition, this computations is called
prefiz addition. If @ is the copy operation defined by z copy y = z, the
prefix sums computation can be used to broadcast, or make multiple copies
of data.

This problem has a trivial linear-time sequential algorithm and a well
known O(n/p + logn) time EREW PRAM algorithm [63, 112, 119]. A
prefix addition algorithm for the CRCW PRAM model with O(log p) word
size runs in time O(n/p + log n/ loglog n) [49, 170].

The prefix addition computation is sensitive on all its variables since
the sum of all the elements in the array A must be computed, so that the
lower bound of Theorem 5.14 applies. We now give an optimal Block PRAM
algorithm for performing the prefix sums computation.
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Algorithm PREFIX (4,n,®,5)

Input: Array A of length n.
Output: Array S, the prefix sums @-computation of A.
Comments: The levels of the [-ary tree are represented as the rows

of the matrix B. The levels of the tree are numbered [1...[logp/log!]]
from the leaves to the root. The matrix is taken to be stored in row-major
order as a contiguous array of O(n) entries. The array can be initialized to
0 in time O(n/p + I). Each processor uses two local variables, count and
oldcount; all other variables are global. The output is returned as array §.

1

for all 7, 0 < i < p do in parallel
count « 0
for k «— 0 until [logp/log!] do
B(0,i- [n/p] + k) < count
count «— count ® A(i- [n/p] + k)
B(1,%) « count
for r — 1 until [logp/logl] do
for all i, 0 < i < p/l” do in parallel
oldcount «— 0
count « 0
for k < 0 until/ - 1 do
count — count @ B(r,il + k)
B(r,il + k) « oldcount
oldcount « count
B(r +1,%) « count
for r «— [logp/log!] down to 1 do
for all 4, 0 < i < p/I" do in parallel
for k — 1 until [ -1 do
B(r,il+ k) — B(r 4+ 1,i) ® B(r,il + k)
for all 7, 0 <7 < p do in parallel
for k « 0 until [n/p] — 1 do
S(i- Tn/p] + k= 1) = B(1,i)® B(0,i - [n/5] + )
Sn—-1)—S(n—-2)+ A(n - 1)

Analysis: Steps 1 and 4 each take O(n/p + [) time. FEach of the

[log p/ log ] iterations of steps 2 and 3 takes O(I) time. Step 5 takes O(I)
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time. The overall time is O(n/p + llogp/logl) = O(n/p + llogn/logl).

Theorem 5.15.
The complexity of performing prefix sums computations on an array of
length » on a Block PRAM is ©(n/p + llog n/logl). O

In his book on vector models of parallel computation, Blelloch [31] intro-
duces the scan vector model of parallel computation, a variant of the EREW
PRAM in which prefix sums computations on up to p inputs are assumed to
be primitive operations which can be implemented in unit time. He argues
the practicality of the scan vector model by noting the low Boolean function
complexity [119] and the relatively low empirical running time [91] of prefix
sums computations.

Blelloch catalogs a number of problems in graph theory, static networks
and computational geometry for which there are parallel algorithms in the
scan vector model which run asymptotically faster than the corresponding
benchmark EREW PRAM algorithms. In particular, scan vector model
algorithms for connected components, biconnected components, minimum
spanning tree, maximum flow, maximum independent set, logic simulation,
neural networks, convex hull, building a k-d tree, closest pair in the plane
and line of sight all run O(logn) times faster than on the EREW PRAM
model. Since by Theorem 5.15 the cost of adapting a scan vector algorithm
to the Block PRAM model using the procedure PREFIX is O(llogn/ logl), it
follows that the scan vector model algorithms run at most O(I/log!) times
slower on a Block PRAM than on an EREW PRAM. This leads us to suggest
the Block PRAM model as a basis in PRAM theory for the specific study
of prefix sums-based parallel algorithms, beyond the empirical justifications
given by Blelloch in [31].

5.2.3 Integer sorting

We conclude our discussion of prefix sums with a simple example of a prefix
sums-based parallel algorithm, a Block PRAM algorithm for integer sorting,.

Let A be an array of n numbers, or keys, in the range {1,2,...,n}. The
integer sorting problem is to produce an array A’ whose elements are the
keys arranged in nondecreasing order. The stable integer sorting problem
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asks us to produce also a permutation 7 such that A'(f) = A(w(¢)); and
m(¢) < w(j) if A'(Z) = A'(§) and 7 < j.

A deterministic sequential algorithm for stable integer sorting taking
O(n) time is well known [7], as is a deterministic EREW PRAM algorithm
taking time O(nlogn/p+logn) [93]. Many CRCW PRAM algorithms have
been developed recently, including;:

¢ a deterministic CoMmMoN CRCW PRAM algorithm taking worst-case
time O(nloglogn/p + log n/ loglog n) [30];

¢ a randomized ARBITRARY CRCW PRAM algorithm taking expected
time O(n/p + logn/loglogn) [82]; 4

¢ a randomized ARBITRARY CRCW PRAM algorithm which outputs the
sorted integers as a linked list (see Section 5.3) in expected time O(n/p +
loglog nlog* n/ logloglog n) [82]; and

e randomized algorithms for sorting n integers in the range {1,2,...,m}
taking expected time O(n(loglogm)?/p + (loglog m)?) for the ARBITRARY
CRCW PRAM and O(nlogmloglogm/p + logn + loglog m) for the Com-
MoN CRCW PRAM [139].

Specific algorithms for the integer sorting problem work by moving each
key into a group of cells (bucket) according to its place values (radices) when
expressed in some base system. Hence integer sorting is sometimes referred
to as bucket sorting or radiz sorting.

In the general sorting problem, the keys are not assumed to have any
numerical value, and must be ordered according to comparisons among the
keys. This makes the problem more difficult: the sequential complexity of
general sorting is O(nlogn).

We give results for both integer sorting and general sorting in this chap-
ter. In this section, we give a deterministic Block PRAM algorithm for
integer sorting. For our Block PRAM model with O(logp) word size, we
could express characters and floating-point numbers as integers and use the
integer sorting algorithm for all purposes. Clearly, this can be done in prac-
tice. However, in this thesis we will use the integer sorting only for its stated
purpose. An upper bound on the Block PRAM complexity of general sorting
is given in Section 5.8.
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Algorithm INTEGER SorT (4, A',n,T)

Input: Array A of n integers in the range {1,2,...,n}

Output: Sorted array A’, permutation 7 such that A’(Z) = A(x(4)); and
7(2) < w(§) if A'(3) = A'(j) and i < j.

Comment: The sort is a radix sort where the integers are expressed in
base 2. We assume that z is an integral power of 2, affecting the running
time by at most a constant factor. The bucket for each radix is a row of B,
an ¢ X n matrix. For 1 <¢ < n, a 1is placed in the A(%)-th bucket at the
i-th column. The number of 1’s in each bucket are counted, and ranks are
assigned to each 1 in the matrix occurring in order from left to right, then
top to bottom. This is done by combining the prefix addition of the bucket
counts and the prefix additions along each row.

We assume 2 < p < n?; with fewer processors we can appeal to Brent’s
Theorem (Theorem 2.1), which allows us to trade time for processors. We
cannot use more than n? processors efficiently. Let m = |p/x ], the number
of processors available for each bucket. Let R = [log n/logz], the number
of rounds in the algorithm.

Steps 4 and 6 are bookkeeping operations. Step 4 puts the full sums
which were computed in step 3 into a contiguous array. Step 6 makes m
copies of each subtotal in the array G to avoid read conflicts in step 7. In
addition to the local variables used in the subroutine PREFIX, each processor
uses the local variables radiz and rank; all other variables are global.

0 for all 7, 0 < i < p do in parallel
for k « 0 until [n/p] — 1 do
w(i- [n/p] + k) —i-[n/p] +k
A/~ [n/p] + k) = AGi- [n/p] + k)
for r «— 1 until R repeat steps 1-8
1 foralli, j,0<i< 2,0 <j< mdo in parallel
for £ — 0 until [n/m] -1 do
B(i,j - [n/m] + k) — 0
2 - for all 4, 0 £ i < z do in parallel
for k «— 0 until [n/p] — 1 do
radiz — A'(i+ [n/p] + 1) — a7 |A'(i - [n/p] + k)/2"]
radiz + |radiz [z
B(radiz,i - [n/p] + k) « 1
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3 for all 4, 0 < ¢ < z do in parallel
PREFIX (B;,n,+,5;)

4 for all ¢, 0 < 7 < z do in parallel
T(¢) « Si(i—1)

5 Prerix (T,z,+,G)

6 for all i, 0 < ¢ < z do in parallel

C(i,0) — G(i—1)
PRrEFIX (Ci, m, copy, C?)
7 foralli, j,0<i< 2,0<j< mdo in parallel
for k « 0 until [n/m] —1 do
if B(3,7- [n/m] + k) =1 then
rank «— Si(j - [n/m] + k) + Ci(j)
p(rank) «— j - [nfm] +k
8 for all 7, 0 < ¢ < p do in parallel
for k « 0 until [n/p] — 1 do
7(i- [n/p] + k) « w(p(i- [n/p] + k)
(i - [n/p] + k) — A(x(i- [n/p] + k)

Analysis: The initialization step 0 takes O(n/p + [) time. During each
round, steps 1 and 7 take time O(n/m+1), steps 2 and 8 take time O(n!/p),
step 3 takes time O(n/m -+ llog n/logl), step 4 takes time O(!), step 5 takes
time O(llogz/log!), and step 6 takes time O(llogm/logl). The overall
time complexity is O((logn/logz) - (n(z + 1 +logz)/p+ llogn/logl)). By
setting ¢ = 2Moe(t+(pllogn)/(nlogh)] we have

Theorem 5.16.
n integers in the range {1,2,...,n} can be sorted stably in time
¢ O(Inlogn/(plogl) + llog?n/log?l) for p < n;
e O(llog? n/(log!log 2(pl/n))) for n < p < n?. ' ]

Corollary 5.17.

(1) n integers in the range {1,2,...,n} can be sorted stably in time
O(llog?n/log?l) on nlog!/logn processors.

(2) Let € > 0 be a constant. Then n integers in the range {1,2,...,n}
can be sorted stably in time O(llogn/log!) on nl*¢ processors. O

65




5.3 Linked lists

The linked list is an alternative to the array in storing sequences of elements
in memory. Instead of forming an orderly block of consecutive memory loca-
tions, the elements in a linked list can appear anywhere in memory. Stored
with each element is a pointer giving the address of the next element of the
sequence. Arrays are preferable to linked lists when it is necessary to find
the k-th element of a sequence. However, linked lists are preferable to arrays
when it is necessary to perform many insertion and deletion operations.

Definition.

On the Block PRAM model, a linked list of n elements consists of two
arrays A[1...N] and S[1...N] of size N > n. A is called the data array
and S is called the pointer array. The first element in the list, called the
head, is stored in A(1). For 1 < i < n — 1, if the i-th element of the list is
stored in A(j), then the (¢ 4 1)-st element of the list is stored in A(S(4)).
That is, the (i + 1)-st element of the list is stored in A(S®(1)). The values
of §@)(1),1 < i < n—1, are distinct integers in the range {2,3,...,N}. By
convention, §()(1) = 0.

Note that only n of the N locations in each array are defined; the others
do not need to be initialized. However, it is frequently assumed in definitions
of linked lists that N = n (e.g. see [48, 84]). In such a case we say that the
linked list is compact.

Definition.

Given a linked list (A,5), the list ranking problem is to compute the
equivalent array B. That is, compute B[1...n] such that B(i) = A(S¢~1)(1)).
Equivalently, compute elements in an array of distances D[1...N]such that
A(1) = A(S(=DP0)-1)(1)) for each element A(:) of the list.

The problem restricted to the case N = n is called the compact list
ranking problem.

The list ranking problem has a trivial linear time serial algorithm. We
do not know of an efficient parallel algorithm for general list ranking. How-
ever, for compact list ranking, there is a standard O(nlogn/p + log n) time
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EREW PRAM algorithm [206]. Optimal O(n/p+logn) time EREW PRAM
algorithms are also known [18, 51]. The latter algorithms are “rather elabo-
rate” [104], and [18] concedes that the standard algorithm “is still probably
the best deterministic algorithm” in practice. Trading determinism for sim-
plicity and lower constants, randomized EREW PRAM algorithms taking
time O(n/p + logn) have recently appeared [20, 104].

The basic step in all list ranking algorithms known to the author is
shortcutting individual elements from the linked list. To shortcut an ele-
ment A(¢), A(¢) is removed from the list and the pointer S(571(3)) of its
predecessor A(S~1(2)) is updated, or “jumped,” to its successor S(i).> The
distance computation follows each pointer jumping step: if S() # 0 then
D(%) is updated to D(:) + D(5(3)).t

Algorithm STANDARD PARALLEL Li1ST RANKING
Comment: L(z) = 1 until A(Z) has been removed from the list, when

L(z) « 0.
1 for all 7,1 < i < n do in parallel
L(i) i
if §(¢) # 0 then D(i) «— 1 else D(z) « 0
2 for r «— 1 until [logn] do

for all 4, 1 < 7 < n do in parallel
if S(¢) = 0 then L(i) < 0
if L(¢) = 1 then
D(i) « D(3) + D(5(2))
5(8) « 5(5(2))

Elements can be shortcut in parallel, provided that no two adjacent
elements are shortcut simultaneously. Finding a large set of nonadjacent
elements to shortcut—symmetry breaking—is a nontrivial problem, and the

. improved deterministic algorithms in the literature have used the parallel
symmetry-breaking technique of Cole and Vishkin, called deterministic coin
tossing [48, 77].

3In this section, we frequently view arrays as invertible functions: S™(i) denotes the
value z, 1 < ¢ < N, such that S(z) =i.
*Pointer jumping is also frequently called “pointer chasing” and “shunting.”
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The sequential list ranking algorithm can be viewed as shortcutting the
elements one at a time from the head of the list. It is observed in [18]
that the standard parallel algorithm is inefficient because it shortcuts the
same element from a number of different lists instead of leaving it alone
once it has been removed: this technique is called recursive doubling (see
e.g. [75, 127]). The optimal parallel algorithms address this inefficiency by
shortcutting each element exactly once.

For Ip < n, we prove an Q(min(In/p,(nlogp)/(plog(2n/lp)))) lower
bound on the time for a Block PRAM to perform list ranking by short-
cutting. The proof uses a reduction to arbitrary permutations (Theorem
5.13) as follows. Assume there is a fast Block PRAM algorithm for list
ranking. Consider a “hard” permutation. We apply the algorithm to a
linked list whose pointers are the actions of the permutation. By observing
how the shortcutting takes place, we derive an impossibly fast conservative
algorithm for performing the permutation on any segment of memory.

Definition.
An algorithm for list ranking is shortcut-based if in its execution on a list
(4,5):
e For each element A(7), some processor executes a shortcut step:
S(871(4)) « S(3)
REMOVE A(¢)
(8, the array of pointers, changes during the algorithm.)
¢ No two consecutive elements A(%), A(5(%)) are shortcut in parallel.

Theorem 5.18.
Any shortcut-based Block PRAM algorithm for compact list ranking
requires time Q(min(n!/p, nlogp/(plog(2n/pl)))) for pl < n. O

Proof.

Let W be a Block PRAM algorithm which performs list ranking by
shortcutting within time T = T'(n, [, p). Consider an n-cycle I on {1,...,n}
such that IT € S,\E, where E is the set of “easy” permutations in Theorem
5.13. (There are (n — 1)! = 2%(n1987) p_cycles, so that almost all of them
are “hard.”) Given an array M, we give a conservative algorithm V which
performs II on the elements of M in time bounded by 37T.
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Let L = (A, 5) be a compact linked list whose pointers are given by the
actions of II; i.e., §(¢) = II(%) for 1 < ¢ < n unless II(¢) = 1. By convention,
we define S(II71(3)) = 0.

Execute W on the problem instance L. Since W is shortcut-based, each
of the list elements A(2), A(3),..., A(n) must be shortcut from L. To short-
cut A(%), some processor must have exclusive access to each of §(571())
and S5(2).

Suppose that processor P shortcuts A(:) beginning at time step ¢. As
part of the algorithm V, we schedule the following exchange procedure for
processor P beginning at time step 3%, where the actual values of i and
A~1(3) are taken from tracing the execution of W. (Temp is a local variable;
all other variables are global.)

Temp — M(A™1(3))
M(A7Y(3)) — M(3)
M (%) «— Temp

These procedures comprise the entire algorithm V. We check that V is
well-defined. Clearly each exchange procedure requires at most three times
as long as the corresponding shortcutting procedure, regardless of how global
memory accesses are pipelined, so that the exchanges can be performed at
the scheduled times and in the correct sequence.

The action of V on M may be written as a product of 2-cycles. Exchanges
which are performed in parallel correspond to shortcutting nonadjacent el-
ements of L and, therefore, to disjoint 2-cycles, which  commute. Hence
no conflicts in access to global memory are created, and the action of V
is well-defined. It should be noted also that V is obviously a conservative
algorithm.

Finally, we establish that V performs the permutation II on the elements
of M. Let My, Ao be the original input arrays to algorithms V and W,
respectively. Then it is easy to check that the invariant “For each 7 such
that A(%) is in the list, M (i) = Mo(A5 (A(2)))” remains true throughout the
reduction. Now, when any element A(¢) is shortcut in W, the corresponding
memory exchange in V places the value of M(¢) into the A(7)-th location of
M this value is never moved again. But by the invariant, this is the same
value that the permutation II would have placed into the location. The
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algorithm V terminates within time 37, as required. o

It is interesting to observe the 1-1 correspondence between factorizations

of II into 2-cycles and possible sequences of shortcutting steps in reducing
L.

Corollary 5.19.
Any shortcut-based Block PRAM algorithm for list ranking requires time

Q(min(nl/p, nlogp/(plog(2n/pl)))) for pl < n.

Proof.
The general list ranking problem reduces to the problem of performing

arbitrary n-cycles conservatively on some (not necessarily contiguous) set of
n locations M(4),..., M(i,) in an array M[1...N]. O

We observe that compact list ranking is finely granular for | = O(logp),
p = n/logn.

Corollary 5.20. .
Assuming shortcut-based algorithms, the complexity of the problem of

ranking a compact list of length » on p = n/logn processors is O({logn)
for I = O(logp).

Proof.

The upper bound follows immediately from any of the optimal O(n/p+
log n) EREW PRAM algorithms for compact list ranking [18, 51], since all
of them are shortcut-based. ]

We know of no evidence to suggest that list ranking can be performed
efficiently without shortcutting. This has already cast some doubt on the
prospects for optimal list ranking in practice.

e In a discussion paper titled “Are pointer-based parallel algorithms
realistic?,” Miller [142] recognizes a growing gap between the body of effi-
cient PRAM algorithms, and the real machines being designed to implement
them. On the Connection Machine, a single shortcutting step takes about
1000 times as long as a single local instruction step. Miller concludes: “I
hope that designers of future general purpose parallel machines will consider
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the list ranking problem when they design their machines.”

e Leiserson and Maggs [127] point out that recursive doubling can lead to
congestion because all of the active pointers propagate toward the end of the
list. This quickly results in too many processors attempting to access pairs
of earlier and later pointers. However, they also show that this problem can
be eliminated by symmetry breaking (e.g. deterministic coin tossing) and
shortcutting each pointer only once.

e Gazit, Miller and Teng [71] offer a critical comparison between prefix
sums and list ranking. They observe that on a hypercube machine with
p = n/log n processors, prefix sums can be computed in time 6logn, but the
list ranking algorithms in [18, 20, 51] seem to have running time O(log? n).
They conclude that “if the ultimate purpose of a parallel algorithm is to run
it on a fixed connection machine, then we should minimize the number of
list rankings we perform; and, whenever, possible, replace the list ranking
procedure with the prefix sums procedure.” However, they do not justify
this conclusion by proving a w(n/p + logn) lower bound for list ranking on
the hypercube.

Taken together, our results for prefix sums computations and list ranking
give the first rigorous theoretical justification for these emerging practical
concerns about the difficulty of pointer jumping. As a shortcut-based proce-
dure, list ranking represents an asymptotic bottleneck in many Block PRAM
computations.’

One way to overcome the list ranking bottleneck is to exploit the simi-
larity between list ranking and prefix sums computations (observed e.g. in
[104, 138]). It is possible, although not immediately obvious, that we can
replace list ranking with prefix sums to obtain asymptotic improvements in
complexity.

o Gazit, Miller and Teng [71] give an algorithm for tree contraction
(see Section 5.4) which replaces a constant proportion of the list ranking
operations with prefix sums. This has no overall effect on the algorithm’s
asymptotic complexity in any model.

e Prefix and list ranking computations have been used interchangeably

®Hagerup’s algorithm for integer sorting which outputs a linked list (see Section 4.2.3
and [82]) suggests that list ranking currently also represents an asymptotic bottleneck in
PRAM computations.
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for very simple procedures such as finding the minimum of » values [75, 138].
When implementing such procedures on the Block PRAM model, prefix
sums computations should be used.

e More substantively, we demonstrate in Section 5.5 that we can choose
prefix sums over list ranking as the basic step for a Block PRAM algorithm to
find the connected components of dense graphs, with an asymptotic savings
in complexity.

A more general solution to the list ranking bottleneck is to allow ar-
bitrary pipelining. A Block PRAM model allowing arbitrary pipelining is
introduced by Gibbons [76], and Gibbons’s EREW Phase LPRAM list rank-
ing algorithm can be easily adapted to run on such a model in O(n/p +
llogn/log!) time. (See Chapter 8 for this result, and a detailed comparison
between these models.) That is, in hoping for hardware support for the
list ranking procedure, Miller [142] is essentially asking for the capability of
arbitrary pipelining. The absence of such support strengthens the case for
studying a block-hierarchical model of parallel computation.

5.4 Expression trees

Perhaps the most obvious application of computing machinery is to long
chains of arithmetic calculations. Today the youngest schoolchild is familiar
with the value of electronic calculators in adding long columns of numbers.
The evaluation of arithmetic expressions is a popular benchmark problem
for describing computing power.

In parallel expression evaluation, it is helpful to use a data structure
which identifies the dependencies between the various subexpressions during
the evaluation. An ezpression tree is such a data structure.

Definition.

A rooted tree T = (V,E,r) is a connected directed acyclic graph in
which the root r has outdegree 0 and the other vertices have outdegree
1. The leaves of a tree are those vertices having indegree 0; the other
vertices are called internal vertices. If the leaves of a tree are labeled with
constants (words) and the internal vertices are labeled with basic arithmetic
instructions, the resulting data structure is an expression tree.
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We define the value of an expression tree inductively as follows. The
value of a leaf is the value of its label. The value of an internal vertex is
the value of its arithmetic instruction applied to its inputs. The value of
an expression tree is the value of its root. If the operation at an internal
vertex is not commutative, the inputs to that vertex must be ordered in the
specification of the expression tree.

An expression tree on n vertices can be represented with three arrays
A,S,U on [1...n], where A(Z) gives the description of node i, and ¢ is
specified as the U(7)-th input to vertex S(i). The definition of shortcutting
can then be extended in the obvious way from linked lists to expression trees.
In the EREW PRAM model, an expression of length » may be evaluated in
O(n/p + log n) time in two stages: first, construction of an expression tree;
and second, evaluation, or contraction, of the expression tree. All of the
known efficient tree contraction algorithms are shortcut-based.

Theorem 5.21. [26]
Given an array representing an arithmetic expression of length n with

operations +, —, X, /-and brackets, the corresponding expression tree can be
computed on an EREW PRAM in O(n/p + logn) time. O

Theorem 5.22. [1, 50, 71, 74, 110]
An expression tree with n vertices can be evaluated on an EREW PRAM
in O(n/p + logn) time. o

We can now state our complexity results for tree contraction on the Block
PRAM. A straightforward problem reduction gives the following result.

Proposition 5.23.
Any shortcut-based Block PRAM algorithm for tree contraction requires
time Q(min(nl/p, nlogp/(plog(2n/pl)))) for pl < n.

Proof.

(From a compact list of length n we can construct an expression tree of
size 2n as follows: each list has value 1, each internal node computes binary
addition, and the list’s pointer array is the same as the tree’s successor array
restricted to the internal nodes. Clearly this reduction can be performed in

73




time O(n/p + 1). Contraction of this tree will rank the original list. O

Corollary 5.24.

Assuming shortcut-based algorithms, for [ = O(log p), the complexity of
the problem of contracting an expression tree with n vertices on p = n/logn
processors is O(llogn) for | = O(log p). o

5.5 Graphs

By graphs in this section we will mean simple undirected graphs G = (V, E),
where V is a nonempty set of n vertices and E is a set of m edges. G is
connected if there exists a path between every pair of distinct vertices in V.
A connected component of G is a maximal connected subgraph of G. G is
dense if m = ©(n?) and sparse otherwise.

Connectivity is a fundamental property of graphs. The problem of find-
ing connected components is a key subproblem to the problems of testing
a graph for planarity, biconnectivity and triconnectivity, and of finding a
minimum spanning forest and an ear decomposition of a graph. It is also an
important problem in its own right.

Connected components can be found sequentially by depth-first search
in time O(m + n) (i.e., O(n?) for dense graphs). The best known PRAM
algorithms for finding connected components are as follows:

e an ARBITRARY CRCW PRAM algorithm taking O((m+n)a(m,n)/p+
log n) time;®

e a CREW PRAM algorithm taking O(n?/p+log® n) time [47, 194]; and

o an EREW PRAM algorithm taking O(((m + n)log n)/p+log? n) time
[111].

Note that the CREW PRAM algorithm is optimal for dense graphs and
the CRCW PRAM algorithm is almost optimal for sparse graphs. Whether
there exists an optimal O(logn) time algorithm for sparse graphs remains
an important open problem in the parallel complexity theory [98].

We consider two algorithms for finding connected components: the CREW
PRAM algorithm of Chin, Lam and Chen [47] and the O((m + n)logn/p+

Sa(m,n) is the inverse Ackermann function, a function that grows so slowly that it is
constant for all practical purposes.
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log n) time ARBITRARY CRCW PRAM algorithm of Shiloach and Vishkin
[176].

The main idea of the CREW PRAM algorithm [47] is the path com-
pression technique of [92]. Trees in an undirected graph are constructed,
or “hooked” together, by having each vertex point to its lowest-numbered
neighbor. These trees are compressed, and vertices along these paths are
merged into “supervertices.” The process is then repeated on the graph
induced by the supervertices, then on the super-supervertices, and so on.
The number of supervertices is reduced by half after each iteration, so that
the algorithm is finished after log n stages.

Definition.

Let C[1...n] be an array of integers with 1 < C(¢) < n such that C
induces a pointer graph containing no cycles of length > 2. That is, for
k > 2, there are no distinct é4,...,% such that C(41) = ég,...,C(ig-1) =
ik, C(ix) = 1. The path compression problem is to compute C*, where
C*(3) = C»=1(4).

In the algorithms of [47, 92] the path compression problem is solved on
a CREW PRAM in time O(nlogn/p + logn): for each of logn iterations,
each processor performs the shortcutting operation C(i) « C(C(7)). This
procedure is essentially the standard parallel algorithm for list ranking where
we do not bother to compute ranks. Here, concurrent reads are necessary
because C'(¢) = C(j) can occur for distinct i,j. The path compression
problem can also be solved using just the pointer-jumping steps from any
shortcut-based tree contraction algorithm, and there are O(n/p+logn) time
EREW PRAM algorithms for this (Theorem 5.22). However, as we have
seen, pointer-jumping on the Block PRAM model is finely granular.

The CRCW PRAM algorithm of [176] improves on [47] by performing the
shortcutting operation only a constant number of times on each processor
during each iteration. All of the vertices, not just the supervertices, share
the burden of “hooking” trees together. This change creates possible write
conflicts in global memory. However, in the Block PRAM model, resolv-
ing these conflicts using the PREFIX procedure takes time O(/logn/logl),
asymptotically faster than performing logn shortcutting operations in time
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O(llogn). We establish this now.

The algorithm in [176) uses 2m + n processors by assigning one processor
to each vertex and two processors to each edge, one at each end. The vertex
processors are never active at the same time as the edge processors. Among
the edge processors, concurrent accesses occur only between processors cor-
responding to adjacent edges, and then only in accessing data associated
with the common vertex. Among the vertex processors, concurrent accesses
occur only at pointer jumping steps C(i) — C(C(7)).

Let 6(v) denote the number of edges incident to vertex ». To provide
for 6(v) concurrent reads of a datum in global memory associated with » (a
v-datum), we maintain a block of §(v) + 1 copies of it. (One copy is kept
as the original.) Copies of the initial data can be produced using a prefix
copy computation.

To provide for §(v) concurrent writes, each processor writes to its own
copy of the v-datum. After each write round, we perform three prefix sums
computations: the first two to find a copy which disagrees with the original
(if any), the third to make §(v)+1 copies of it. (For example, the operations
min and max could be used.) By choosing different operations, we can
simulate different rules for resolving concurrent writes.)

Now suppose we are performing the algorithm on a Block PRAM with
p processors, where n < p < m. Then we can schedule the algorithm so
that each Block PRAM processor always simulates several CRCW PRAM
processors accessing the same v-datum. Then since the copies of each v-
datum are stored contiguously, the accesses from each processor can be
pipelined.

The simulation procedure uses O(llogn/logl) time to perform O(m)
operations, provided p > n. By Brent’s Theorem, it follows that each
step involving the m edge processors can be simulated in time O(m/p +
nllogn/(plogl) + llogn/logl).

We now show how concurrent reads during a pointer jumping step C(7) «
C(C(%)) can be supported on the Block PRAM model. The idea is to make
one copy of C(%) for each occurrence of ¢ in the array C. Scheduling the
processors to do this is fairly involved, and is described below. For clarity,
we describe an algorithm for n processors; with fewer than n processors we
can appeal to Brent’s Theorem.
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Procedure SnorTcuT (C,n)

1

for all i, 1 < ¢ < n do in parallel
L))~ T@E) «U@E)«0
INTEGER SorT C,(C’,n,T)
B(1) « C'(1)
for even i, 2 < i < n do in parallel
B(@) « C'(i)-C'(i - 1)
for odd ¢, 3 < i < n do in parallel
B(i) —C'(i)—-C'(: - 1)
for all 7, 1 < ¢ < n do in parallel
if B(¢) > 0 then do
D(3) « C(C'(3))
B(i) « 1
PrEFIX (B,n,+,S)
for all 4, 1 £ ¢ < n do in parallel
if B(¢) = 1 then do
L)« 1
T(S(%)) « 1
for odd i, 1 < 7 < n do in parallel
ifT()>0and T(i+1) # 0 then U(T(3)) — T(: + 1)
ifT(¢)>0and T(:+ 1) = 0 then U(T(i)) —n+1
for even i, 2 < i < n do in parallel
ifT()>0and T(i+ 1) # 0 then U(T(2)) — T(: + 1)
HT()>0and T(i+1) =0 then U(T({)) —n+1
for 7 — 0 until [logn/logl] — 1 do
for all i, 1 < i < n do in parallel
if B(i) =1 then do
for k — 0 until [ - 2 do
m« L&)+ 1"+ (G- LE)-(I-1)+ k&
if m < U(¢) then do
D(m) « D(3)
B(m) « 1
L(m) « L(%)
U(m) < U(%)
for all ¢, 1 < i < n do in parallel C(x(%)) « D(?)
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Comments: In Step 3, if B(:) > 0 then i is a “leader”; the correspond-
ing processor is “active” and will fetch the first copy of C(C’(7)).) In Step
4, D is the array where the copies will be stored; it need not be initial-
ized. Step 8 is a specialized broadcasting procedure. B(%) specifies whether
processor i is active or inactive. An active processor ¢ belongs to a group
of processors, numbered from L(¢) to U(i) — 1 inclusive, which is making
copies of the value that L(7) originally read in Step 4. All necessary memory
accesses having been supported in Step 8, the shortcutting is performed in
Step 9.

Analysis: Steps 1, 3, 4, 6 and 7 take O(n/p + [) time. Steps 5 and
8 take O(n/p 4 llogn/logl) time. Step 9 takes O(nl/p + [) time. Step
2 takes S(n,l,p) time, where S(n,l,p) is the Block PRAM complexity of
integer sorting n keys. Since the outputs of an integer sorting algorithm
are sensitive on all variables, the lower bound of Theorem 5.14 applies to
S(n, 1, p) and the overall complexity of the procedure is O(S(n, !, p)+ nl/p).

We have the following result:

Theorem 5.25.
The connected components of a graph with n vertices and m edges can
be found in time O(mlogn/p+ nllog®n/(plogl) + S(n,l,p)-logn). O

Note that by setting { = O(1) our result matches the performance of
the EREW PRAM algorithm of [111] for sufficiently dense graphs with m =
Q(nlogn). The following corollary shows that our algorithm is efficient for
sufficiently dense graphs with m = [n1+%(1),

Corollary 5.26.
The connected components of a graph with n vertices and m = [nl+2(1)
edges can be found in time O(mlogn/p + llog? n/logl). o

5.6 Strings

Let P[1...m] and T[1...n] be arrays with m < n. P is the pattern string
and T is the test string. The string matching problem is to produce an array
M[1...n—m+ 1] such that M(Z) =1if P[1...m]=T[...i+m— 1] and
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M%) = 0 otherwise.

String matching is an important problem in text and database process-
ing, with applications to “pattern recognition and computer vision, molec-
ular sequence analysis, data compression and encoding, speech synthesis,
[and] text retrieval and editing” [95].

O(n) time sequential algorithms for string matching have been known
as early as 1977 [69, 108]. Optimal O(n/p + log n) deterministic [195] and
randomized [103] EREW PRAM algorithms are also known.

In this section, we show that the randomized algorithm of [103] matches
the deterministic lower bound for the Block PRAM model. This work for-
malizes the fairly obvious intuition that there is some spatial locality inher-
ent in text processing problems, and illustrates probably the first optimal
randomized Block PRAM algorithm in the literature.

Following standard PRAM algorithms, and for clarity, we will assume
the strings are over a binary alphabet: P € (01)™,7 € (01)*. A fan-out
argument similar to Theorem 5.14 gives the following lower bound.

Theorem 5.27.
Any deterministic Block PRAM algorithm for string matching requires
time Q(n/p + llogn/logl).

Proof sketch.

Case 1: logm = O(logn). Fix an array T. Fach element of the out-
put array M is sensitive on all of the elements in P, so Q(llogm/logl) =
Q(llog n/log!) time is required.

Case 2: logm = o(log n). Fix an array T. Each element of the output ar-
ray M must see at least one of the elements in P, so some element of P must
be copied at least [n/m] times, and Q({log(n/m)/logl) = Q(llogn/logl)
time is required.

There are instances when it is obvious that all of the text has to be read
(e.g., when the pattern is all 0’s), so Q(n/p) time is required in either case.
O

The randomized string matching algorithm of Karp and Rabin [103] is

particularly amenable to implementation on the Block PRAM model. The
idea is to associate to each string a short fingerprint. These fingerprints are
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easier to compare than the strings. The fingerprints are computed using a
randomly chosen fingerprint function with the property that the fingerprints
of any two distinct strings are very unlikely to be equal.

We consider the following family of fingerprint functions. Let £ > 1
be a constant and let ¢ be a random prime number less than nF*1, The
fingerprint function K| is a homomorphism from (01)* to the group of 2 x 2
unimodular (determinant 1) matrices over the ring Z; defined as follows:

mm=(47);
=1 )

K,(1)= ( (1) i ) and

Ko(X :Y) = Kqo(X)Kq(Y);
where A denotes the empty string and : denotes string concatenation.

Algorithm STrING MATCH (P, T,n,m, k)

1 choose a random prime g < n¥*1

2 J — K (P)

3 foralli,1<i<n-m+1
M(i)=0

N() e« Ky(T[i...i + m—1])
if N(i) = J then M(i) =1

Theorem 5.28. [103]
The probability that Algorithm STRING MATCH gives the correct output
is greater than 1 — n~*, O

In order to parallelize Algorithm STRING MATCH, Karp and Rabin sug-
gest the following procedure for computing N (i) in step 3.
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Procedure CoMPUTE N
Comments: * is 2 X 2 matrix multiplication modulo ¢. I is the 2 x 2
identity matrix.

1 for alli,1 <i<n-—m+1 do in parallel
K (i) — K (T(3))

2 PREFIX (K,*,n—m+ 1, R)

3 R(0) « I

4 for alli,1 <i<n—-m+1 do in parallel
S(i) « R(7)

5 for alli,1 <i<n-m+1do in parallel

N(@E) «~ R(GE—-1)"t+ SGE+m~1)

The arithmetic operations used in the algorithm are scalar addition and
multiplication, and 2 X 2 matrix multiplication modulo ¢. (The matrices in
R have determinant 1 and can be inverted without divisions.) Clearly each
of these operations can be performed in a constant number of instructions
on a Block PRAM with multiplication and Q(logq) word size. Note that
the word size is sufficient provided p = n*), Algorithm STRING MATCH
can now be implemented directly on the Block PRAM model provided that
we broadcast J and g after step 2. We have the following

Theorem 5.29.

String matching between a pattern of length m and a text of length n
can be performed probabilistically on a Block PRAM with multiplication in
time O(n/p + llogn/ log!) with probability of error less than n~*, provided
p = k), o

5.7 DButterflies

Definition.

For n = 2%, the n-input butterfly network consists of 1 + logn levels,
each containing n vertices. The vertices in the j-th level of the butterfly,
1 < j < k, are denoted by (i,5), where ¢ € [0...n — 1] = (01)*. The edges
of the butterfly are between consecutive levels: from (7, 7) there are edges
to(i,j+1)and (i@e;,j+1)for1<j<k.
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Like the balanced binary tree, the butterfly is a fundamental structure in
parallel computation. Besides being one of the most thoroughly studied net-
work topologies proposed for general purpose parallel computer architectures
(e.g. see [169]), the butterfly is the natural communications architecture for
important special purpose applications.

e Consider the problem of computing the discrete Fourier transform.
Given an array A[0...n—1] of real numbers, its discrete Fourier transform is
the array B[0...n—1] of complex numbers, where B(j) = Y7L A(k)e?mik/n
and i = (—1)Y/2. The butterfly is the data-dependency graph for the fastest
known sequential algorithm for this problem, the Fast Fourier Transform of
Cooley and Tukey [54], which takes O(nlogn) time. The computation can
be performed in parallel as follows. Each of n processors simulates a line of
nodes, one node in each level of the butterfly. At each level, each processor
evaluates a constant time function on its two inputs and communicates the
result to the two outputs at the next level. If there is no communication
latency, the computation can be performed in the same time as O(logn)
sequential arithmetic operations.

e Consider the problem of sorting a bitonic sequence on a network of
comparators. Array A[l...n] is bitonic if there is a k, 1 < k& < n, such
that A(1), A(2),...,A(k) is nondecreasing and A(k), A(k + 1),...,A(n) is
nonincreasing. A comparator is a node which has two input wires and
two distinguished output wires H, L. Given two inputs z,y, a comparator
outputs max(z,y) on wire H and min(z,y) on wire L. The butterfly is the
graph representing the optimal comparator network for bitonic sorting due
to Batcher [27]. The sorting network can be computed in parallel as follows.
At each level of the graph, each of n/2 processors compares its two inputs
and outputs them to the next level in sorted order.

Where there is substantial communication latency, the logn-level but-
terfly is no longer the natural structure for these parallel computations.
Because each level of the butterfly represents a communication step, it is
desirable to view the butterfly as having fewer, wider levels. In this section
we show that for many computations with p processors and communica-
tion latency I, a version of the butterfly with ©(logn/log(n/p + [)) levels
is the best choice. For n processors, this butterfly gives computation time
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O(llogn/logl), improving the time of O(llog n) for the log n-level butterfly.
It is instructive to compare the work in this section with our results for the
binary tree in Section 5.2.

5.7.1 Properties of the butterfly

The butterfly has many well-known properties which make it a suitable
architecture for recursive parallel algorithms.

¢ The n-input butterfly may be derived from n (2n — 1)-vertex balanced
binary trees by identifying twice as many vertices at each level recursively
from the roots to the leaves.

¢ The n-input butterfly may be derived from the n-vertex hypercube
by subdividing each hypercube vertex into one vertex at each level of the
butterfly and partitioning the edges into levels according to their dimensions.

e For 1 < m < k, any m consecutive levels of the n-input butterfly
comprise 2~ independent copies of the butterfly on 2™~ input vertices.

Note that the n-input butterfly has Q(nlogn) vertices while its binary
tree and hypercube relatives have only n vertices. Given n processors, it
may be inefficient to perform algorithms designed for the Q(nlogn)-vertex
butterfly when binary tree and/or hypercube algorithms are available. How-
ever, for an important class of computations on the butterfly, the number
of vertices required can be reduced from Q(nlogn) to n.

Definition. [124]

A normal computation on the n-input butterfly is a synchronous parallel
computation in which:

e each of n processors simulates a line of vertices, one vertex in each
level of the graph;

e each vertex represents a computation consisting of a constant number
of basic local operations;

e the processors simulate only one level of vertices at a time (the com-
putation can begin and end at any level);

¢ the levels simulated in consecutive steps, if different, are consecutive
(either forward or backward);
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e communication at any given time occurs only between pairs of pro-
cessors connected by edges in the butterfly between the consecutive levels
being simulated.

Clearly, the Fast Fourier Transform and bitonic sorting algorithms de-
scribed in the beginning of this section are examples of normal computations.

Theorem 5.30.
Any normal computation on an n-input butterfly can be implemented
on a butterfly with n vertices with only a constant factor slowdown. 0

Note that the number of vertices cannot be reduced ad absurdum because
the resulting algorithm on n vertices is not normal in general. Also, some
important butterfly algorithms are not normal, e.g. the recent randomized
sorting algorithm of Leighton and Plaxton [162].

5.7.2 The simulation

A Block PRAM algorithm for computing the Fast Fourier Transform is given
in [5].

Theorem 5.31. [5]

The Fast Fourier Transform on n values can be computed on the Block
PRAM with multiplication as a basic operation in time

e O(nlogn/p) for Ip < n;

e O(nlogn/p + llognlogmin(l, p)/(log!log(2lp/n)) for Ip > n. 0

This result can be generalized to any normal computation on the but-
terfly, as we now show.

Theorem 5.32.

For t = Q(log(n/p + 1)), t steps of a normal computation on an n-input
butterfly can be performed on the Block PRAM model in time

¢ O(nt/p) for Ip < n;

e O(nt/p + ltlogmin(l,p)/(logllog(2lp/n)) for Ip > n.
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Proof.

Overview. The processors communicate by accessing shared memory
arrays A[0...n —1] and B[0...n — 1]. Array A (B) is unshuffled (shuffled)
once for each level, allowing forward (backward) communication along edges
in the butterfly.

Case 1: Ip < n. The processors perform the computation one level at a
time, accessing the data arrays in blocks of size I. By Theorem [4.7], A and
B can be permuted between levels in time O(n/p).

Case 2: Ip > n. For 1 < m < k, the k levels of the butterfly can be par-
titioned into [k/m] stages each containing at most m + 1 consecutive levels.
Each stage consists of 2°~™ independent 2™-input butterflies. A processor
can perform m steps of a normal computation on a 2™-input butterfly by
reading the corresponding inputs from the data array, performing the com-
putation sequentially, and writing the outputs back into the data array. For
m > log(n/p), it follows that a stage can be computed in O(l + m2™) time.

The outputs of one stage can be permuted to provide the inputs to the
next stage by using a rational permutation IT with u(Il) = min(m, %k —
m,logl,logp) and taking O(I min(m, k — m,log!,logp)/log(2ip/n)) time.

The computation can be divided into at most [2¢/m] phases, such that
each phase consists of at most m steps of a normal computation on exactly
one of the stages of the butterfly. The theorem now follows by choosing
m = logmax(l/logl,n/p). O

5.8 Other results

In addition to the Block PRAM algorithms and lower bounds mentioned
(and extended) in this chapter, Aggarwal, Chandra and Snir prove results
for matrix multiplication and general sorting. We state them here for com-
pleteness.

Theorem 5.33. [5]
Two n X n matrices can be multiplied on the Block PRAM model us-
ing only addition and multiplication as basic arithmetic operations in time

O(n®/p + llog p/ log(Ip*/3[n?)). =
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The algorithm recursively decomposes the matrices into smaller subma-
trices, using rational permutations to move the entries of each submatrix
into consecutive locations.

Theorem 5.34. [5]

Multiplying two n X n matrices on the Block PRAM model using only
addition and multiplication as arithmetic operations requires time Q(n3/p+
llogn/logl). o

The lower bound uses the fan-in argument of Theorem 5.14.

Theorem 5.35. [5] ‘
The Block PRAM can sort n words in time O(nlogn/p + llogn). O

This result is based on the Ajtai-Komlds-Szemerédi sorting network
(AKS network) [10]. Although this is a strong result, it does not settle
the problem of sorting for practical purposes. Even after improvements by
Paterson [155], the AKS network involves such large constants that results
based on its existence still have only theoretical value. Also, there is a
gap of log! from the lower bound of Q(llogn/log!) time given by Theo-
rem 5.14. The stable integer sorting algorithm of Theorem 5.16 attained
O(llogn/logl) time, but at the price of an asymptotic increase in the num-
ber of processors.
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Chapter 6

Hashing and skewing

The practical value of Block PRAM algorithms depends critically on the
mapping of memory addresses to their physical locations. In real machines,
block pipelining occurs for physically contiguous blocks of memory. When
the memory is hashed or skewed, these physical blocks may not correspond to
the block accesses to shared memory specified in Block PRAM algorithms.
Hashing and skewing therefore affect the entire Block PRAM complexity
theory. In this chapter we describe this impact by examining the Block
PRAM complexity of hashing and skewing.

6.1 Universal hashing

By hashing in this chapter we shall mean universal hashing. In universal
hashing, a hash function is chosen randomly from a universal family con-
sisting of hash functions that are easy to specify and compute.

Definition.

The performance of a universal family of hash functions is expressed
in terms of its independence. A family F of hash functions with domain
D and range R is said to be (h),-wise independent (for h > 2, > 1) if
for all y1,...,yx € R and all distinct 21,...,2x € D, |{f € F : f(z;) =
Y%i,1,...,h}| < p|F|/|R*. (When y is omitted we understand p = 1.)
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Examples.
In the following, let N = {0,...,n — 1} and denote by z mod m the
residue of 2 modulo m. ‘

Hy: Let r be aprime with n < r < 2n. Let f,3(z) = az+b mod r mod =.
" Define Hy = {fop:a,b€ Z;,a # 0}.

Hj: Let n = 2¥ and identify N with the set of 0-1 vectors of length &
(most significant bit first). Let M be the set of ¥ X k 0-1 matrices. Let
fa(z) = Az mod 2. Define Hy = {f4: A€ M}. ‘

Hjs: Let n be a prime and choose an integer k. Let M be the set of arrays
of length k with elements from N. Let fn(z) = Yg<icr m(i)z* mod n.
Define Hz = {fn : m € M}.

Hy: Same as Hy, but M is restricted to nonsingular matrices.

It is easy to verify thd‘t;fanﬁ]jes H, and H, are 2-wise independent,
while an H3 hash family is kt—._.‘_wise independent. Families Hy; and H, were
the subject of Carter and Wegman’s first paper on universal hashing [37]
and have been well studied in other contexts. Hz hash families have been
studied even more extensively. Because polynomials are easy to visualize
and compute, they have been convenient benchmarks for specified degrees
of independence. ’

Since Hy C Hy and |Hy| > |Hg|/pfor p = €7/5 = 4.0552 [141], we observe
that Hy is 2,-wise independent. Studying the problem of distributing shared

memory among a number of physical modules, Mehlhorn and Vishkin proved

a further useful independence property of the family Hj,.

Proposition 6.1. [141]

Let y € R and z1,...,2, € D, and let d = dim(z1 — z2,...,21 — z4).
Then [{f € Hy: f(:) = y,i = 1,...,h}| < p|Hy|/|R|?, where p = €7/% =
4.0552. J

Recently, Siegel [177] presented n°-wise independent families of hash
functions which can be defined in sublinear space and computed in con-
stant time. These families, based on expander graphs, are widely applicable
in theoretical PRAM simulations, including those for the Block PRAM and
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Faulty Block PRAM models (see Theorem 7.7); however, they involve con-
stants too large for practical purposes.

Theorem 6.2. [177]

Let 0 < 6§ < 1 be fixed. Then there is an M%/2-wise independent
universal family Hs of hash functions from [0...M — 1] to [0...M — 1]
which can be defined in O(M?) space and evaluated in O(1) time. O

6.2 Hashing shared memory

In this section, we study the complexity of hashing on the Block PRAM
model. We shall confine our attention to conservative hashing algorithms.
We will not consider the complexity of evaluating addresses, choosing to
focus instead on the effect of hashing on locality. This issue is of interest in
several contexts. '

s Simaulations between theoretical models: In order for a Block PRAM
to simulate a uniform (i.e. non-hierarchical) shared memory model such as
the EREW PRAM, the memory addresses are hashed. (This simulation
result is presented in Section 7.2.) The Block PRAM complexity of hash-
ing corresponds to the minimum complexity of performing this particular
simulation, and to the complexity of moving between uniform and block-
hierarchical views of shared memory.

¢ PRAM simulations on real hardware: Permutations of large (length
m) message packets can be performed bit serially by randomized routing on
the hypercube [9] and butterfly and shuffle-exchange networks [126] in time
O(m + logp). PRAM simulations using these routing algorithms can take
advantage of block pipelining. The Block PRAM complexity of hashing
corresponds to the minimum complexity of performing these simulations.
See Chapter 7 for a formal discussion of this relationship.

e Programmer-controlled hashing: The prevailing vision of general pur-
pose parallel computers [189] is that the network topology should be hidden,
but that the programmer should retain control of memory management, in-
cluding the decision whether or not to hash the shared memory. This de-
cision should take into account the complexity of hashing, as well as the
relative complexities of Block PRAM and simulated PRAM algorithms.
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e Automatic hashing: If the shared memory is always hashed, then we
will probably want to change the hash function from time to time [145, 169].
This may be necessary if a particular hash function proves ineffective in
preventing contention during a given computation.

e Input/output: Files will read into (and out from) the shared memory
in unhashed form and will need to be hashed (and unhashed).

e Partially hashed shared memory: In certain PRAM system designs,
some of the memory address space will be hashed (uniform) and some left
unhashed (block-hierarchical) [76]. The Block PRAM complexity of hashing
is important in determining the possible benefits to this approach, and the
cost of changing the partition.

6.2.1 Noninjective hashing

The hash functions in Hy, Hy and Hj3 are not necessarily permutations;
we must formalize what it means to perform hash functions in general on
the Block PRAM model. Suppose we are hashing shared memory array
Al0...n — 1] using function f :[0...n—1] — [0...n — 1]. The array will
be hashed into an n X n matrix B, stored in row-major order, such that for
i =0,...,n—1, the first |f~1(j)| +1 entries in the column vector B; are the
elements of f~!(j) (possibly none) in some order followed by an end marker.
This generalization preserves locality considerations, and in particular, the
complexity of performing permutations (within a factor of 2). The rows of
the matrix correspond to successive probes in the hash table, which must
take place in distinct accesses to shared memory.

6.2.2 A lower bound on universal hashing

Theorem 6.3.

Let 4 > 0 be a constant, let F' be a universal family of 2,-wise indepen-
dent hash functions and let f be chosen at random from F. Then performing
f conservatively requires expected time

e Q((nlogmin(n/l,n/p))/(plog2(n/lp))) for Ip < n; and

o QI+ llogmin(l, p)/ log2(Ip/n)) for Ip > n.
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Proof.

For each of the cases [ = O(1), [ = Q(n), p = O(1), p = Q(n), the above
bounds are ©(n/p + [), so there is nothing to prove.

In the nontrivial case, we apply the potential function argument of
[5] (Lemma 5.3). This time, let A = X UY and define segment A4; =
X[im,...,(i+ 1)m-1]U Y, U...U Y(i41)m-1- The definition of m-wise
potential and the proof of Lemma 5.3 extend naturally to an arbitrary hash
function f.

Let m € {l,p,n/l,n/p}. Then m = w(1) and m = o(n). We estimate
E(®(f, m)), the expected m-wise potential of f, as follows:

BT Srle T a(f,m) - (2, (£,m) - 1)
= B(CMm -ty n/m V{21, 22, 31, 92) @1 # @95 21,02 € Ar;
Y1,Y2 € As; f(ml) = y1; f(22) = y2}])
< pm? (by 2,-wise independence); and
E(Cy s Erle ™ 62 (fm)
=B s gt () (k) — 1)
BT So/m gt (7 m)
<pm?+n
= o(nm) (in the nontrivial case).

Now assume for contradiction that

E(2(f,m)) = B(TL5 ™ SrL5™ ok, (f,m) log i, (f,m)) = Q(nlogm).
Denote &,(f,m) = y,"/m* et (fym)logz},(fym) < mlogm. Then there
are constants ¢, ¢z > 0 such that for at least ¢;n/m of the r’s, E(®.(f,m)) >
cgmlogm. By convexity, for these r’s we have E(Eﬂ’g'l 2 (fim)) =

Q(m?), and therefore E(Y-"/m~! s2n/m=1 ;2 o(f,m)) = Q(nm), a contradic-
tion.

Therefore, E(®(f,m)) = o(nlogm) for m € {l,p,n/l,n/p}, and the
theorem follows from Lemma 5.3. O

6.2.3 The class Hy

The class Hy is exactly the class of homogeneous linear permutations. ;From
Theorem 5.9 we have the following result.
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Theorem 6.4.
Any member of Hy can be performed in time
e O((nlogmin(n/l,n/p))/(plog2(n/lp))) for Ip < n; and
e O(! + llogmin(, p)/ log2(Ip/n)) for Ip > n. O

6.3 Skewing

Definition.

For u|n, suppose that the elements of an array A[0...n — 1] are to be
stored in n/u modules Mo, ..., My/,_1, or contiguous arrays of length u. Let
C be a collection of subsets of {0,...,n — 1} of size not greater than n/u.
A skewing scheme for (C,n,u) is a function f:[0...n—1]—[0...n/u—1]
which assigns the elements of A to the modules such that

o each array element A(%) € Up<jcnu—1 Mj; and

e for each T' € C, each module M;, 0 < i < n/u — 1, contains at most
one element of {A(t): ¢t € T}.

The purpose of skewing is to prevent contention when the pattern of
memory access is known in advance. Skewing schemes can be very difficult
to design, limiting their practical value to frequently used, special-purpose
applications. One such application is in linear algebra, when various vectors
of a matrix must be accessed. Standard skewing schemes [115, 121] provide
for the case when A is an n/2 x nl/2 matrix (stored in row-major order)
and C contains all rows and columns of the matrix. In this section, we prove
a lower bound for this core skewing problem and give an optimal skewing
scheme for 22% x 22* matrices where C contains all rows and columns, and
also diagonals and 2* x 2% subsquares.

6.3.1 A lower bound on skewing
In this section, we show that skewing is as hard as universal hashing.

Theorem 6.5.
Let f be a skewing scheme for (C,n,u), where n = w? and {iu+j:0 <
ifu-1}{ju+i:0<j<u-1}eCforall,0<i<u—1. (Thatis, Ais
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a % X » matrix and C contains all rows and coluimns of A.) Then performing
f conservatively requires time

o Q((nlogmin(n/l,n/p))/(plog2(n/lp))) for Ip < n; and

o Q(I + llogmin(l, p)/ log2(Ip/n)) for Ip > n.
Proof.

In the nontrivial case, we apply the potential function argument of [5]
(Lemma 5.3). We estimate ®(f,m), the m-wise potential of f, for m €
{l,p,n/l,n/p}. Recall that m is the size of a segment in the computation of
® and u is the size of a module. Without loss of generality, we assume in each
case that either m|u or u|m; this affects our bounds by at most a constant
factor. Segment A;, 0 < ¢ < n/m — 1, is the union of Aim...(i + 1)m — 1]
with some locations from the modules M;. If m < u, we divide each module
among u/m segments (it does not matter how as long as each segment gets
m elements). If m > u, each segment contains m/u consecutive modules.
The proof of Lemma 5.3 extends to the segments thus defined.

Case 1: m < u. For 0 < r,s < n/m — 1, we have z,,(f,m) < 1 and
O(f,m) = Tolg ™ Srle Tt ot (f,m)logzt,(f,m) = 0.

Case 2: m > u. For 0 < r,s < nfm — 1, we have z,s(f,m) < (m/u)?
and
O(f,m) = Lol Srle Tt aty(f,m) logar,(f,m)

< (n/m)2(m?/n) log(m?/n)

= nlog(m?/n).

These estimates together give the result. i

6.3.2 An optimal skewing scheme

In this section we show that the skewing scheme of [107] is optimal for
the Block PRAM model. This skewing scheme is based on a combinatorial
design called a perfect Latin square. Latin squares have been constructed
for centuries; the standard reference is [58].

Definition.

A Latin square of order n is an n X n square composed with symbols
from N =[0...n — 1] such that no symbol appears more than once in any
row or column.
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Let n = u? and U = [0...u — 1]. Consider the locations in the square
to be labeled with coordinates from N X N. A diagonal is a set of locations
of the form {(¢,k+1t):t€ N} or {(t,k—1):t € N} for some fixed k € N
(using modulo n arithmetic). A u X u subsquare is a set of locations of the
form {(iu+t1,ju+t2) : 11,12 € U} for some fixed i,5 € U.

For n = u?, a perfect Latin square of order n is an n X n square composed
with symbols from N such that no symbol appears more than once in any
row, column, diagonal or u X u subsquare.

Taking the symbols to represent module indices, a Latin square gives a
skewing scheme for (C,n%,n), where C is the collection consisting of all rows
and columns of a matrix. Similarly, a perfect Latin square gives a skewing
scheme which allows C also to contain diagonals and subsquares.

Construction. [107]

We describe the construction of a perfect Latin square of order n = 22*,
We adopt the following notations to simplify the presentation considerably.
Let N = [0...2%F — 1] 2 (01)%. For z,y € N, let s(z,y) € N denote the
symbol to be placed in location (z,y). For 1 < i < 2k, let z;, 9, 8:(2,9)
denote the i-th bit of 2, y, s(z, y) respectively, most significant bit first. Let
@ denote the bitwise exclusive-or operation.

The construction is as follows:

si(z,y) = i1 ® Yr4i for all even i, 1 < i < k;

$i(2,y) = ppi—1 O y; for all even i, k + 1 < 7 < 2k;

si(2,y)=2; ® Ti41 O Yp4i for all odd ¢, 1 <2 < kj and

si(2,Y) = ki ® Chpir @ yi forall odd 4, k+ 1 < i < 2k,

For odd % only, the following boundary conditions are given as exceptions
to the formulae above:

8k—2(2,¥) = Th—1 D Y2r—2

52k-2(%,Y) = Tak-1 ® Yk—2

sk-1(2,y) = 2k @ Yok-1 D 1

S2k-1(2,y) = Tok © Y1 D 1

se(e,9y) = Tp—2 @ Yor—2 @ Yo

s2k(2,¥) = T2k—2 © Yk—2 B Y-
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Let A[0...2% — 1] be an array representing a 22¥ x 2%F matrix in Tow-
major order. The above construction can be applied to give a skewing
scheme for (C,2%*,2%), where C represents all rows, columns, diagonals and
2k x 2% subsquares of the matrix. Let N =[0...2%% —1], J =[0...2% — 1]
and define a function Il : J — J bitwise by

(2 - 2% 4+ y) = si(z,y) for 1 <4 < 2k, 2,y € N;

(2 - 2% + y) = @9 for 2k +1 < i < 4k, z,y € N.

Given that the above construction correctly gives a Latin square, it fol-
lows that I is a (nonhomogeneous) linear permutation which performs s.
The modules are the rows of the permuted 22% x 22* matrix. From Corollary
5.10 we have the following result.

Theorem 6.6.

There is a skewing scheme s for (C,n,u), where n = 2%, 4 = 225 guch
that:

e when s is applied to a u X » matrix A, C contains all rows, columns,
diagonals and 2F x 2% subarrays of A; and

e s can be performed conservatively in time

O((nlogmin(n/I,n/p))/(plog2(n/Ip))) for Ip < n; and

O(l + llog min(!l, p)/ log2(Ip/n)) for Ip > n. o
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Chapter 7
Exploiting locality

A major open question in the study of realistic PRAM models is whether
communication locality can be exploited in general purpose parallel compu-
tation [76, 89, 189]. The challenge is to design a real machine which will
not only efficiently support general purpose parallel computations, but will
allow those algorithms which exploit locality (in particular, fast and efficient
Block PRAM algorithms) to gain the enhancements to performance of doing
80.

In this chapter, we express our belief that such machines could be built
by using the Block PRAM as a bridging model for parallel computation.
First, we discuss the extent to which the Block PRAM meets the criteria
for a bridging model. Recall from Section 3.1 that a bridging model should
(a) be realizable in hardware and (b) allow efficient simulations of PRAM
algorithms. These issues are addressed in Sections 7.1 and 7.2, respectively.
Second, we argue that the natural locality in Block PRAM algorithms can
be preserved even during PRAM simulations which use hashing. The no-
tion of locality-preserving hashing is introduced in Section 7.3. Finally, we
discuss multitasking and multigauging, two features of real multiprocessing
systems that do not represent obstacles to PRAM simulation but will nev-
ertheless affect performance. These issues are discussed in Sections 7.4 and
7.5, respectively.
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7.1 Distributed-memory support for the Block
PRAM

Recall from Section 3.1 that a distributed-memory machine can simulate
shared memory by message passing. In this section, we call attention to
recently discovered routing algorithms which provide the block pipelining
necessary to support the Block PRAM model on distributed-memory ma-
chines.

7.1.1 Routing support for block pipelining

Recent bit-serial randomized routing algorithms [9, 126] provide strong theo-
retical support for block pipelining in message-passing architectures. These
algorithms allow any permutation of n message packets of size m to be
routed in time O(m + logn) with high probability on hypercube and but-
terfly networks. Previous randomized routing algorithms [87, 125, 133, 161,
168, 169, 186, 187, 191] are designed for fixed size packets and run in time
O(mlogn) with high probability when implemented on real machines [9].
The following theorems demonstrate that routing algorithms are available to
support block pipelining on hypercube and butterfly networks, respectively.

Theorem 7.1. [9)]
Any permutation of n packets of size m can be routed in O(m + log p)
time with probability 1 — n=%() on a hypercube network with p=n. O

Theorem 7.2. [126]

Any permutation of n packets of size m can be routed in O(m + log p)
1/2
_2_29(103 n)

time with probability 1
0

on a butterfly network with p = nlogn.

7.1.2 Shared memory vs. message passing

The bit-serial routing algorithms in the previous section support block pipelin-
ing in the passing of long messages between processors. This amounts to
support for the following variant of the Block PRAM, which was also intro-
duced by Aggarwal, Chandra and Snir.
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Definition. [5]

A message passing Block PRAM with p processors and latency [ is a set
of p numbered processors, each having a memory of unbounded size. Each
processor is a unit-cost RAM with a restricted arithmetic set and O(log p)
word size. All processors synchronously execute the same program; some
processors may wait during any given instruction.

The instruction set includes message passing. During a message passing
step, each processor may send or receive at most one message packet. Pack-
ets cannot be combined; i.e., each processor can communicate with at most
one other processor during a message passing step.

A message passing step takes time [ + m, where m is the number of
words in the longest packet sent or received. All other instructions may be
performed in unit time.

Since message passing can be simulated by reads and writes to shared
memory, the message passing Block PRAM model is weaker than the Block
PRAM model. However, as the following results of Aggarwal, Chandra and
Snir [5] show, the difference in power is not great. In other particular, we
can consider bit-serial routing for the message passing Block PRAM model
as also substantially supporting the Block PRAM model.

Definitions.
A Block PRAM with fized block sizeis a Block PRAM with the following
restriction: processors can access the global memory only in blocks of size [.
A (parallel) computation is oblivious if, when executed on all inputs of
the same size, the operations executed and memory locations accessed on
each processor during each time step are the same. (Note that all conserva-
tive algorithms are oblivious.)

Theorem 7.3. [5]

e For oblivious computations, the message passing Block PRAM is equiv-
alent to the Block PRAM with fixed block size.

e Oblivious computations taking time 7" on a Block PRAM can be per-
formed in time T'log! on a Block PRAM with fixed block size.

e Nonoblivious computations taking time 7" on a Block PRAM can be
performed in time T logp on a Block PRAM with fixed block size. O
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7.1.3 Hashing in distributed memory

As noted in Section 3.2.2, computations on distributed-memory machines
may cause contention and congestion, and the memory space may need to
be hashed. In this section, we show that universal hashing can be performed
optimally on the message passing Block PRAM model.

Theorem 7.4.

For Ip < n, any member of H4 can be performed conservatively on a mes-
sage passing Block PRAM in time O((nlogmin(n/l,n/p))/(plog2(n/Ilp))).
This bound is tight.

Proof.

Conservative algorithms are oblivious, so it is equivalent to prove the
result for a Block PRAM with fixed block size. The lower bound of Theorem
6.3 for the Block PRAM holds also for the weaker model.

For Ip < n, the algorithm in Theorem 5.9 accesses the shared memory
only in blocks of size [ and n/p > [. Blocks of size n/p can be accessed [
locations at a time within time 2n/p + 2l = O(n/p + ). O

7.2 PRAM simulation on the Block PRAM

In the paper introducing the Block PRAM model, Aggarwal, Chandra and
Snir [5] gave a sketch proof that the EREW PRAM can be simulated effi-
ciently on the Block PRAM. This result suggests that the Block PRAM, a
model which allows the exploitation of communication locality in particular
algorithms, is also a suitable model for general purpose parallel computation.

Theorem 7.5. [5]

Let € and k be positive constants. Then T steps of a PRAM computation
with ¢ processors and ¢* memory can be simulated (probabilistically) in
O(Tq/p) steps on a Block PRAM with p processors, provided that Ip'*+¢ < g.

Proof sketch.

The PRAM shared memory is distributed across the local memories of
the Block PRAM processors, using a random universal hash function. The
Block PRAM shared memory is used to route memory requests and replies
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among processors. With high probability each processor reads and writes
to O(g/p) locations at each simulation step, and the routing can be done in
time O(gq/p). O

We supply details of the simulation which allow us to bound the prob-
ability that the simulation will not be efficient. We will use the following
well-known tail estimation.

Lemma 7.6. [166)]

If Y1,...,Yy are independent Bernouilli trials such that the expected
value E for their sum is E(3_; ¥i) = n, and if § > 0, then Prob{} ;Y; >
(14 8)n} < (e/(1+ 6)1+8)~. O

Theorem 7.7.

Let € and & be positive constants. Then one step of an EREW PRAM
computation with ¢ processors and ¢¥ memory can be simulated with proba-
bility 1 —exp(—Q(¢/p)) in O(g/p) steps on a Block PRAM with p processors,
provided that Ip'*c < q.

Proof.

Overview. The virtual EREW PRAM shared memory is distributed
among the local memories of the Block PRAM processors, using a random
hash function f € Hs (see Theorem 6.2). Without loss of generality, we
assume k > 27/4 (the Block PRAM memories are unbounded). Also, we
assume that [, p and ¢ are powers of two and that the word size of both
machines is at least log ¢ (affecting our bounds by at most a constant factor).
We take § = 2/3; it may be verified that this gives a ¢-wise independent
class of hash functions from [0...¢*—1] to [0...¢* — 1] which can be defined
in o(¢*~1) space.

Assume the Block PRAM processors are numbered [0...p — 1] and the
EREW PRAM processors are numbered [0...¢g — 1). Then virtual address
2,0 < z < ¢ — 1, is hashed to the local memory of Block PRAM processor
f(z) mod p, and EREW PRAM processor y, 0 < y < g — 1, is simulated by
Block PRAM processor ¥y mod p.

We will use a segment of shared memory corresponding to an array
A[0...4q — 1] to route messages among the processors. The shared memory
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segment A[4ig/p...4(i+ 1)q/p— 1] is called the home block for processor .

A local computation instruction on the EREW PRAM is simulated by
having each Block PRAM processor perform (at most) ¢/p local computa-
tions in time O(q/p).

We describe how each EREW PRAM global read and write instruction
is simulated in time O(g/p).

e Coding: Each processor encodes its (at most) ¢/p global read requests
or write instructions as messages (some possibly null) in a string of 2¢/p
words. A read message is two words giving the requesting processor’s ID
and the virtual address. A write message is two words giving the virtual
address and the data to be written.

e Message passing: Each processor copies its message string into its
home block. Each message has a virtual address to be accessed, which has
been hashed to the local memory of a destination processor. To route each
message, it suffices to copy it into the home block of its destination processor.
With high probability, no processor is the destination processor for more
than 2¢/p messages, and the messages can be routed as a permutation on
array A in time O(g¢/p) by Theorem 5.11.

o Finishing up: Each processor copies its home block into shared mem-
ory. For write instructions, each processor updates the accessed memory
locations. For read instructions, each processor encodes the contents of the
accessed memory locations as messages and these replies are sent back to
the requesting processors as above.

We will call a processor overloaded if it is the destination processor for
more than 2¢/p messages during a simulation step. It remains to show that
in each simulation step, the probability that some processor is overloaded is
exp(—£(g/p))-

Fix a congruence class II = a mod p and a set of memory addresses S C
[0...¢¥ = 1], |5| < ¢. From the ¢g-independence of F we have Prob{|f(S)n
| > 2¢/p} < (e/4)?. Thus the probability that some processor re-
ceives more than 2¢/p messages is bounded above by p - exp(—Q(g/p)) =

exp(—Q(g/p))- O
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7.3 Locality-preserving hashing

Thus far in this chapter, we have presented evidence that the Block PRAM
can be used as a bridging model of parallel computation. In this section, we
present an important advantage to choosing the Block PRAM as a bridging
model: namely, the possibility of exploiting locality even during PRAM
simulations which use hashing.

Definition.

Let A be a Block PRAM algorithm with time bound T'(n, [, p) which uses
at most S(n,l,p) shared memory locations. Let F' be a universal family of
hash functions from [1...8(n,!,p)] to [1...5(n,l,p)]. Then F is locality-
preserving for A if, for any f € F, f can be performed and inverted by a
Block PRAM on S(n,!,p) consecutive locations in shared memory in time

O(T(n,1,p))-

Our results in Chapter 6 show that H4 has optimal locality-preserving
properties possible for a universal family of hash functions.

Assuming that a locality-preserving hash function has been used, a Block
PRAM can exploit locality in hashed shared memory as follows. First, the
memory space is unhashed; next, the Block PRAM algorithm is executed;
and finally, the memory space is rehashed. The algorithm uses at most
S(n, 1, p) shared memory locations; without loss of generality these can be
consecutive. The definition of locality preservation implies that the hashing
and rehashing do not dominate the complexity of the algorithm.

The Block PRAM algorithms of Chapter 5 are immediate applications
of locality-preserving hashing. Assume that the shared memory of a par-
allel computer based on the Block PRAM model has been hashed in order
to provide for the PRAM simulation in Theorem 7.7. The complexity of
performing many algorithms on such a system will depend on whether a
locality-preserving hash function has been used. Table 7.1 illustrates some
improvements attainable for the case Ip < n, ! < p.

We should note that PRAM simulations (including Theorem 7.7) typi-
cally use at least Q(log p)-wise independent universal hash families. Hy, a
2,-wise independent family, is not appropriate for these theoretical results.
However, there is no evidence to suggest that H4 and other 2,-wise inde-
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| Algorithm | Generally | Using H, ]

Linear permutations | O(n/p + Inf) | O(n/p + [}+¢)
Prefix sums O(n/p+ In°) | O(n/p+ llogn/logl)
String matching O(n/p+In) | O(n/p+ llogn/logl)

Table 7.1: Block PRAM complexity in hashed shared memory

pendent universal hash families fail in practical use. Valiant [189] suggests
that H; can be used in practice for PRAM simulations, with the advantage -
that H; hash functions can be specified in constant space and evaluated in
constant time. Because of the advantages of locality preservation, we sug-
gest that H4 should also be seriously considered for practical applications
in general purpose parallel computation.

7.4 Multitasking: the Hierarchical PRAM

Typically, high-performance computers will be multitasking, or performing
many different algorithms and procedures at once. Note that our scheme
for locality-preserving hashing requires that each algorithm running on a
multitasking multiprocessor has its own separately hashed memory space.

The benefits of this memory partitioning have recently been recognized
by Heywood and Ranka [89], who introduce the Hierarchical PRAM. The
Hierarchical PRAM consists of a number of sub-PRAMs running asyn-
chronously with respect to one another. Each sub-PRAM is a synchronous
shared-memory model (e.g., a Block PRAM). Heywood and Ranka write:
“One drawback to current PRAM simulation techniques is that they oblit-
erate (through hashing) any natural communication locality that may be
present in an algorithm ... The scope of this problem [can be reduced] via
simulation of multiple smaller sub-PRAMs. This constrains the extent of
obliteration to be within the sub-network simulating the sub-PRAM.”

The discovery of locality-preserving hash functions now confirms the
value of memory partitioning for general multitasking. This approach may
also be helpful when running a single algorithm. For the purpose of demon-
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strating the value of partitioned shared memory, it would be helpful to find
a natural algorithm which can be partitioned into sub-PRAM procedures,
some of which exploit locality for the benefit of the whole algorithm.

7.5 Multigauging and corner turning

Many high-performance multiprocessors have been designed to support multi
gauging, or the capability of changing the word size during a computation.
By reducing the word size, multigauging multiprocessors are able to provide
a proportionate increase in effective parallelism.

Multigauging is not a new idea. Twenty years ago, the Illiac IV’s 64
64-bit processing elements could simulate 128 32-bit elements or 512 8-bit
elements [34] (although this capability was never actually utilized). Today,
multigauging is now a standard feature of hardware-reconfigurable architec-
tures including the Blue CHiP [180], the Connection Machine [146, 182] and
the Content Addressable Array Parallel Processor [150, 201].

Given multigauging capability, it becomes advantageous to match the
word size of the architecture to the word size required by the algorithm.
In our analysis thus far, we have assumed a word size of O(logp) in order
to allow the indirect addressing steps present in many PRAM algorithms.
For many of the applications in Chapter 5, however, including permuta-
tions, prefix sums computations and string matching, this assumption is not
necessary.

The algorithmic advantages of multigauging for these and other applica-
tions are explored in [150, 172, 181]. However, all of the studies to date relate
to specific network architectures, including the mesh, binary tree, butterfly
and similar topologies. This is because much of the interest of this work
is in preserving the communication structures of network topologies under
multigauging simulations.

As an architecture-independent model of parallel computation which ac-
counts for some aspects of communication locality, the Block PRAM model
is a natural setting for studying the implications of multigauging. In this
section, we illustrate the power of multigauging for performing permuta-
tions on the Block PRAM. Similar adaptations can be made for prefix sums
computations and string matching.
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7.5.1 Corner turning

Definition.

Consider a processor with word size k. Let W denote an array of k
consecutive locations in the processor’s local memory, and let w;; € {0,1}
denote the j-th bit of word W(i) for 1 < ¢,5 < k. The corner turning
operation replaces W with the array V, where V(i) = wqswg; -+ wy; for
1<i<k.

The corner turning operation is at the heart of all multigauging architec-
tures known to the author. Under certain simplifying assumptions, corner
turning is actually necessary to provide multigauging capability [150]. The
value of the operation is in providing parallel access to the individual bits in
words, thus enabling bit parallel data transfer. Fast corner-turning capabil-
ity is usually provided by a combination of hardware and software support.
For example, the Connection Machine’s SPRINT chip can input 32 32-bit
words from local memory in 32 cycles, and output them, corner-turned, to
the floating-point processor in another 32 cycles [146].

We can describe corner-turning capability in complexity-theoretic terms
as follows.

Definition.

A RAM-based complexity model (e.g. RAM, PRAM, Block PRAM) with
word size k has corner turning capability if the corner turning operation can
be performed by a single processor in time O(k).

We believe that corner-turning capability is a reasonable and realistic
extension to a RAM-based complexity model. The corner turning operation
meets all of the Boolean circuit complexity-based criteria of Section 4.2.8,
because it can be performed trivially by circuits in O(x?%) size and O(1)
depth.

7.5.2 Bitwise permutations

We can show that on the Block PRAM model, corner turning allows bit-
wise permutations to be performed as quickly (up to a constant factor) as
arbitrary word-level permutations (Theorem 5.11).
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Theorem 7.8.

Let B be a Block PRAM with corner-turning capability and word size
k. Then B can perform any permutation II on the kn bits in n consecutive
locations in shared memory in time

» O(min(nl/p, nlogp/(plog(2n/pl)))) if pl < n;

e O(min(nl/p,llog(n/!)logmin(p,!)/logllog(2pl/n))) if pl > n.

Proof.

Without loss of generality, we assume [,p,k,n are powers of 2. The
permutation algorithm of Theorem 5.11 consists of basic permutation oper-
ations of the following two forms:

e Each processor reads n/pl blocks of size [ and writes them into their
new locations.

e Fach processor reads and permutes a block of size n/p and writes it
back. .

The first operation amounts to reading n/pl blocks of [k bits each and
writing them into their new locations, in time O(n/p + ).

The second operation can be adapted for bitwise permutations as follows.

Case 1: k < nfp. For a given processor, consider the nx/p bits in
the block as a n/p X & matrix of bits, stored in row-major order. Any
permutation on these bits can be performed in three phases by executing
permutations on the rows, the columns, and the rows again. Each permu-
tation on the rows is a permutation of n/p words in local memory and can
be performed in time O(n/p). To perform the permutation on the columns,
we transpose the matrix between phases and perform a permutation on the
rows instead. The matrix transposition can be performed in time O(n/p)
using corner-turning and permutations of words. The overall time required
(including the access to shared memory) is O(n/p + ).

Case 2: & > nf/p. For a given processor, consider the nk/p bits in
the block as a n/pk X k% matrix of bits, stored in row-major order. Any
permutation on these bits can be performed in three phases by executing
permutations on the rows, the columns and the rows again. Each permuta-
tion on the rows is a permutation of n/p words in local memory and can be
performed in time O(n/p). To perform the permutation on the columns, we
repeat Case 1 for n/pk instances of k X k matrices of bits, each taking time
O(k). The overall time required is O(n/p + ).
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The Block PRAM algorithm can now be adapted, step by step, to per-
form arbitrary bitwise permutations in the same time bounds as Theorem
5.11. O
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Chapter 8

Bulk synchrony

The analytical results thus far relate to the Block PRAM, a synchronous
parallel complexity model. The synchronization issue sets our work apart
from most of the recent studies on realistic parallel complexity models, which
are more concerned with the issue of asynchrony.

Two of the most comprehensive of these studies relate to the Bulk
Synchronous Parallel (BSP) model of Valiant [189] and the Asynchronous
PRAM model of Gibbons [76]. The BSP, the Asynchronous PRAM and
the Block PRAM share many of the same theoretical parameters, and, not
surprisingly, the three models have very similar complexity theories.

8.1 The models

The Bulk Synchronous Parallel model and the Asynchronous PRAM are
models which allow for subset synchronization. In this chapter, we focus
mostly on special instances of these models—the XPRAM and EREW Phase
LPRAM, respectively—which allow only for barrier synchronization. In this
section, we define each of these models. We make some remarks about subset
synchronization in the Asynchronous PRAM model in Section 8.3.

8.1.1 The Bulk Synchronous Parallel model

Definition. [189]
The Bulk Synchronous Parallel (BSP) model consists of p asynchronous
processor-memory elements with message-passing and synchronization capa-
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bility. There are four parameters: p, the number of processors; s, the com-
munication latency or “startup cost”; g, the pipelining rate or “throughput”;
and L, the synchronization rate or “periodicity.” (Note that lower values of
g and L correspond to faster pipelining and synchronization, respectively.)
The parameters L and s may be taken to be functions of p. It is assumed
throughout [189, 190] and in this section that 2<s< L <pand g > 1.

Each processor is a RAM, capable of performing each local instruction
in unit time (measured by its own clock).!

Message-passing is performed by a routing algorithm such that each
processor can send and receive up to h messages in time s + gh. (Each
message can be thought of as the contents of one memory location.) It is
frequently assumed in [189, 190] and this chapter that g = O(1). Note that
this is equivalent to assuming support for arbitrary pipelining.

Synchronizations may be among any subset S (possibly all) of the pro-
cessors, and take place periodically, as follows. At regular intervals of  time
units, the processors in S are tested to determine whether all of them have
reached the synchronization point in their local computations. If not, then
the processors in S which have already reached the synchronization point
must wait for the others to catch up.

8.1.2 The XPRAM

Definition. [190]

The XPRAM is a BSP with the following restriction: the only synchro-
nization steps allowed are synchronization barriers for all p processors. The
interval between two successive synchronization barriers is called a superstep.

During a superstep, processor i performs a; local instructions, sends b;
messages to other processors, and receives ¢; messages from other processors.
Let ¢t = max{a; + gb; + g¢i + s : 1 < i < p}. The time required for the
superstep is [t/L]L. Note that max(t,L) < [t/L]L < t+ L and therefore
[t/L]1L = O(t + L).

*Although not specified in [189], for consistency we assume a restricted arithmetic
instruction set and O(log p) word size.
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8.1.3 The Asynchronous PRAM

Definition. [76]

The Asynchronous PRAM model consists of a set of p sequential pro-
cessors. Each processor is a RAM with a local memory of unbounded size.?
There is also a shared memory of unbounded size. Each processor runs its
own local program independently of the timing of the other processors. Any
desired timing dependencies between processors must be specified in the
programs for those processors.

Each processor has a local clock. The time required for a processor to
execute an instruction is measured in time units on its local clock. There
are four types of instructions.

o Local instruction: Perform any basic RAM instruction on elements in
local memory.

e Synchronization step: Processors in a set 5 synchronize at a logical
point in a computation. Each processor in S waits for all of the processors
in S to arrive at this point before continuing its local program.

e Global write: Write the contents of a private memory location into a
shared memory location. A synchronization step must be placed between
writes by any two different processors to the same shared memory location.

e Global read: Read the contents of a shared memory location into a
private memory location. A synchronization step must be placed between a
write by a processor to a shared memory location and a read by a different
processor to the same location.

8.1.4 The Phase LPRAM

Definition.

A Phase LPRAM is an Asynchronous PRAM with two additional pa-
rameters B and [, and the following time costs for instructions®:

¢ A local instruction can be performed in unit time.

e The only synchronization steps allowed are synchronization barriers
for all p processors. A synchronization barrier can be implemented in time

2 Although not specified in [76], for consistency we assume a restricted arithmetic in-
struction set and O(log p) word size.

3Gibbons [76] uses the letter d rather than ! to represent the latency. For consistency
with the Block PRAM, we use the letter .
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B. The interval between two successive synchronization barriers is called a
phase.

e A processor can write to any k locations in shared memory in time
[+ k and can read any k locations in shared memory in time 2/ + k, subject
to synchronization requirements. The locations must be addressed directly;
i.e. by indices in a global array where the indices are present in the program
or the local memory.

The parameters B and [ may be taken to be functions of p. It is assumed
throughout [76] and in this section that 2 <[ < B < p. '

CRCW, CREW and EREW variants of the Phase LPRAM model may
be considered, according to whether memory locations can be accessed by
different processors during the same phase. All of the Phase LPRAM al-
gorithms for specific problems presented in [76] are written for the EREW
variant. The EREW variant is also most closely related to the Block PRAM
model, and so we focus on this variant.

8.1.5 The arbitrary-Block PRAM

As we have already discussed, block pipelining is a unique feature of the
Block PRAM among shared-memory models of parallel computation in the
literature. The BSP model and the Asynchronous PRAM both allow arbi-
trary pipelining. To separate the issues of block pipelining and bulk syn-
chrony, it is helpful to introduce a variant of the Block PRAM model that
allows for arbitrary pipelining.

Definition.

An arbitrary-Block PRAM is a Block PRAM in which accesses to arbi-
trary sequences of memory locations can be pipelined. That is, a processor
can write to any k locations in shared memory in time [ + k& and can read
any k locations in shared memory in time [ + k. Concurrent accesses to
intersecting sets of memory elements are serviced in some arbitrary order.
The locations must be addressed directly; i.e., by indices in a global array
where the indices are present in the program or the local memory.
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Simulating model
Simulated model XPRAM | LPRAM | BPRAM | PRAM
XPRAM 1M 1@ 1@
EREW Phase LPRAM | log p(23) 1(®) 1(®)
arbitrary-Block PRAM | log p(34) B/l 1
EREW PRAM log p(2:5) B 1)

(1) results proved in this thesis
(2)for g=0(1),s= L =logp
(8) for general computations; 1 for oblivious computations
(4) for general computations; L/s (i.e. 1) for oblivious computations
(5) for general computations; L (i.e. log p) for oblivious computations

Table 8.1: Summary of simulation results: parallel slackness used

8.2 Simulation results

In this section we describe the best known simulation results among the
four models: XPRAM, EREW Phase LPRAM, arbitrary-Block PRAM and
EREW PRAM. In particular, we demonstrate that the order in which we
have listed them corresponds to their relative power from weakest to strongest.

Table 8.1 summarizes the simulation results in this section by giving the
parallel slackness required for each simulation. For example, the arbitrary-
Block PRAM can simulate the EREW Phase LPRAM without parallel
slackness, and the EREW Phase LPRAM can simulate the arbitrary-Block
PRAM given B/ parallel slackness.

The closeness among the models in this section is important from the
standpoint of software portability. Valiant [189] envisions that portable
software written for the BSP model will include parameters for problem
size and the machine-specific values of p, ¢ and L. Software for the Block
PRAM model can be written without regard for the problem of asynchrony,
using only two machine-specific parameters, p and [. The close simulations
among these models indicate that the costs for this relative simplicity of
programming are modest.

112




8.2.1 Computations on the XPRAM

Theorem 8.1. [190]

Let k be a positive constant. Then T steps of an EREW PRAM compu-
tation with ¢ processors and ¢*¥ memory can be simulated (probabilistically)
in O(T'q/p) steps on an XPRAM with p processors, provided that g = O(1),
s =L =logp, and ¢ > plogp. O

This simulation result is the best known, even for simulating the weaker
Block PRAM and EREW Phase LPRAM models on the XPRAM.

For oblivious computations, however, we can show that the EREW Phase
LPRAM and the XPRAM are actually equivalent (for ¢ = O(1)). This is
an application of a simulation technique of Vishkin and Wigderson [196],
by which any oblivious EREW PRAM algorithm for p processors can be
reconstructed to run in asymptotically the same time, using only p shared
memory locations.

Description of simulation. The virtual shared memory is distributed
across the local memories of the processors. Each simulation step consists
of three stages. In the first stage, each processor copies (at most) one of
its virtual shared memory locations into the shared memory. In the second
stage, the time step is simulated, with memory locations readdressed as
necessary. In the third stage, each processor copies (at most) one shared
memory location into its local memory, where it becomes the new virtual
shared memory location.

It is proved in [196] that the virtual shared memory can be kept dis-
tributed so that of the (at most) p virtual shared memory locations required
for each simulation step, at most one is stored in each local memory. The
initial distribution of the virtual shared memory and subsequent redistribu-
tions (in the third stage of each simulation step) are precomputed according
to an edge coloring of a bipartite multigraph associated with the data de-
pendency graph.

The simulation can be adapted as follows to give a simulation of the
EREW Phase LPRAM on the XPRAM.
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Theorem 8.2.
An oblivious EREW Phase LPRAM algorithm running in time #(n, p,[, B)
can be simulated by an XPRAM in time O(¢(n, p, s, L)) provided g = O(1).

Proof.

Without loss of generality, consider an EREW Phase LPRAM algorithm
such that no phase takes time more than B between synchronization barriers.
We show how to simulate a given phase of the algorithm in one XPRAM
superstep taking time O(B).

During each phase, there are no conflicts to shared memory. We can
therefore apply the simulation of [196] with pB processors to maintain an
even distribution of the virtual shared memory among p XPRAM processors.
We define the corresponding XPRAM superstep in three stages. In the
first stage, each processor sends messages giving the contents of the virtual
shared memory locations to the processors that need to access them during
the superstep. In the second stage, the phase is simulated, with memory
locations readdressed as necessary. In the third stage, each processor sends
messages to redistribute the virtual shared memory in preparation for the
next superstep.

Using the result of [196], each XPRAM processor sends and receives
at most B messages in each of the first and third stages. Each XPRAM
processor therefore has at most B local computations, 2B sent messages
and 2B received messages during the superstep. The running time of the
superstep on the XPRAM is therefore at most B + 4gB + s = O(B). O

8.2.2 Computations on the EREW Phase LPRAM

Theorem 8.3.
An XPRAM algorithm running in time ¢ = #(n,p, s, g,L) can be simu-
lated by an EREW Phase LPRAM in time O(#(n,p,l,1, B)).

Proof.

Consider a superstep running in time ¢ on an XPRAM with the given
parameters. Suppose that processor ¢ performs a; local instructions, sends
b; messages and receives c; messages during this superstep. Then ¢t = Q(a; +
b; + c; + s+ L) for all ¢ (since g > 1). This superstep can be simulated
in two phases on an EREW Phase LPRAM with the given parameters by
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allocating one shared memory location to each message.

e Phase 1: All processors perform their local instructions, write their
sent messages to the shared memory, and then synchronize. This takes time
maxj<i<pi{a: + b + I} + B.

e Phase 2: All processors read their received messages from the shared
memory, and then synchronize. This takes time max;<;<p{c; + I} + B.

The overall time required for simulating the superstep on the EREW
Phase LPRAM is max{a;+b;} +max{e;} +2B < 2max{a;+b;+¢c;+[+ B} =
o(t). O

Theorems 8.2 and 8.3 together yield the following

Corollary 8.4.
For oblivious computations, the EREW Phase LPRAM (p, !, B) and the

XPRAM (p, s,g, L) models are equivalent for s = [, L = B and g = O(1).
(]

Theorem 8.5. [76]

An arbitrary-Block PRAM algorithm running in time ¢ using p processors
can be simulated by an EREW Phase LPRAM running in time O(¢B/!) with
pl/ B processors. o

For most of the efficient EREW Phase LPRAM algorithms in the litera-
ture, the simulation result is very close to optimal. Gibbons’s EREW Phase
LPRAM algorithms for prefix sums computations, Fast Fourier Transform
and bitonic sorting [76] can be matched closely by generically simulating the
corresponding Block PRAM algorithms. Of the ©(B/I) parallel slackness
used in the general simulation, at least a factor of Q(Blog!/llog B) parallel
slackness is necessary. It is important to note that the algorithms in Chapter
5 cannot be obtained by generically simulating Phase LPRAM algorithms
on the (original) Block PRAM model, because the Phase LPRAM allows
arbitrary pipelining. The similarities in performance between EREW Phase
LPRAM algorithms and simulated Block PRAM algorithms is indicated in
Table 8.2.
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Complexity
Algorithm | EREW Phase LPRAM | Simulated Block PRAM

Optimal
Prefix sums O(n/p+ Blogn/log B) O(n/p+ Blogn/logl)
FFT O(nlogn/p+ Blogn/logB) | O(nlogn/p+ Blogn/logl)

Bitonic sort O(nlogn/p+ Blogn/logB) | O(nlogn/p+ Blogn/logl)
Not optimal
List ranking O(n/p+ Blogn/log B)
Integer sorting | O(Blogn/logB),p=n O(Blogn/logl), p = nlte

Table 8.2: Representative EREW Phase LPRAM algorithms

Proposition 8.6. [76]

An EREW PRAM algorithm running in time ¢ using p processors can
be simulated by an EREW Phase LPRAM running in time O(¢B) with p/B
ProCessors.

Proof.
Each Phase LPRAM processor simulates B PRAM processors, synchro-
nizing after each simulated PRAM step. mi

8.2.3 Computations on the arbitrary-Block PRAM

Proposition 8.7.
'An EREW Phase LPRAM algorithm running in time ¢ = #(n,p, B,[)
can be simulated by an arbitrary-Block PRAM in time O(#(n,p,l,!)).

Proof.
Set B = [ and execute the resulting algorithm, having processors wait
at synchronization barriers as necessary. |

Corollary 8.8.
An XPRAM algorithm running in time ¢ = t(n, p, s, g, L) can be simu-
lated by an arbitrary-Block PRAM in time O(¢(n,p,[,1,1)). 0

We observe that the additional power of the arbitrary-Block PRAM al-
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lows for an efficient deterministic PRAM simulation with only O(!) parallel
slackness. The following result may be compared with the randomized sim-
ulation of Theorem 7.7, which uses O(Ip®) parallel slackness.

Proposition 8.9.

An EREW PRAM algorithm running in time ¢ using p processors can
be simulated by an arbitrary-Block PRAM running in time O(tl) with p/!
Processors.

Proof.
Each Block PRAM processor simulates [ PRAM processors, pipelining
shared memory accesses during each simulated PRAM step. O

The arbitrary-Block PRAM is asymptotically more powerful than the
Block PRAM for finely granular problems such as general permutations and
list ranking, as the next two propositions show.

Proposition 8.10.
Any permutation on n elements in shared memory can performed con-
servatively on an arbitrary-Block PRAM in time O(n/p + ).

Proof. }
FEach processor reads a set of [ distinct elements and writes them into
their new locations. O

Proposition 8.11.
The complexity of ranking a compact linked list of size n on an arbitrary-

Block PRAM is O(n/p + llogn/logl).
Proof.

The upper bound is a consequence of Proposition 8.7 and Gibbons’s
O(n/p+ Blogn/ log B) time EREW Phase LPRAM algorithm for list rank-
ing [76].

The lower bound can be proved by a fan-in argument similar to Theorem
5.14. 0

Taken together, Theorem 5.18 and Proposition 8.11 show that the ob-
served difficulty of pointer jumping may be taken as evidence that arbitrary
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pipelining has not yet been supported in practice.

8.2.4 Computations on the EREW PRAM

Propositions 8.12. ‘

An XPRAM algorithm running in time ¢ = ¢(n,p,s,g,L) can be simu-
lated by an EREW PRAM in time O(¢(n,p,1,1,1). ,

An EREW Phase LPRAM algorithm running in time ¢ = i(n,p,!, B)
can be simulated by an EREW PRAM in time O(t(n,p,1,1)).

An arbitrary-Block PRAM algorithm running in time ¢ = t(n,p,[) can
be simulated by an EREW PRAM in time O(i(n,p,1)).

Proof.
EREW Phase LPRAM and arbitrary-Block PRAM algorithms can be
run directly on an EREW PRAM with the parameters [ and B set to 1.
XPRAM algorithms can be executed on an EREW PRAM by first going
through the EREW Phase LPRAM simulation with the parameters s, g and
L set to 1 (Theorem 8.3). O

8.3 Subset synchronization

In this section, we summarize the current state of research relating to the
power of subset synchronization in the parallel complexity theory. Our dis-
cussion relates to a second instance of the Asynchronous PRAM, the Subset
LPRAM model.

8.3.1 The Subset LPRAM

Definition.

A Subset LPRAM is an Asynchronous PRAM with two additional pa-
rameters, the constant ! and the function B(z):[2...p] — [1...p], and the
following time costs for instructions:

o A local instruction can be performed in unit time.

e A synchronization step among any z processors can be implemented
in time B(z).

e Reads and writes to shared memory are charged as for the Phase
LPRAM.
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Complexity
Subset LPRAM | Simulated BPRAM

Optimal
Prefix sums | O(n/p+ llogn/logl) | O(n/p+ llog? n/log? )
Not optimal
FFT O(llogn/logl),p=n | O(nlogn/p + llog?n/log? )
Bitonic sort | O(llogn/logl), p = n | O(nlogn/p + llog® n/log? 1)

Table 8.3: EREW Subset LPRAM algorithms vs. simulated Block PRAM
algorithms

It is assumed throughout [76] and in this section that 2 <! < B(z) < p,
and that B(!) = O(l). The value of B(l) is significant because [76] shows
that for many fundamental problems it is desirable to synchronize processors
in subsets of size [.

CRCW, CREW and EREW variants of the Subset LPRAM may be con-
sidered, according to whether memory locations can be accessed by different
processors between synchronization steps. All of the algorithms for specific
problems suggested in [76] are for the EREW Subset LPRAM. The EREW
variant is also most closely related to the Block PRAM model, and so we
focus on this variant.

8.3.2 Complexity results

Proposition 8.13. [76]

A Block PRAM algorithm running in time ¢ using p processors can be
simulated by an EREW Subset LPRAM running in time O(tlogp/logl)
with plogl/logp processors. O

Gibbons [76] suggests Subset LPRAM complexity bounds for various
problems, which can be compared with simulation results for the corre-
sponding Block PRAM algorithms in Table 8.3.

iFrom these known problem examples, it remains unclear what bene-
fits are to be gained from subset synchronization, particularly if optimal
efficiency is to be achieved. The general simulations of Block PRAM algo-
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rithms on the Phase LPRAM and Subset LPRAM models (Propositions 8.5
and 8.13) can also be compared. Note that for B(p) = O(llog p/logl), the
Phase LPRAM is at least as powerful for these simulations as the Subset
LPRAM. '

More study is needed to relate the issue of subset synchronization to the
other models discussed in this chapter. The Hierarchical PRAM of Heywood
and Ranka [89], which introduces asynchrony and subset synchronization in
a more tightly structured fashion (see Section 7.4) may be helpful in this
study.
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Chapter 9

Asynchrony

Our treatment of asynchrony thus far has been confined to demonstrat-
ing the close relationships between the Block PRAM model and two bulk-
synchronous models of parallel computation. That is, we have related our
results for the Block PRAM fairly closely to semi-synchronous algorithms
but not to asynchronous algorithms.

We concur with Gibbons [76] and Valiant [188] that synchronous and
semi-synchronous algorithms will continue to be designed in preference to
asynchronous algorithms because of ease of programming and debugging;
see Section 3.2.3. Algorithm designers have found it difficult to “think asyn-
chronously,” and accordingly, relatively few fundamental procedures have
been developed to provide the building blocks for asynchronous parallel al-
gorithms.

In this chapter, we illustrate techniques for the design and analysis of
efficient asynchronous parallel algorithms. We first describe a relatively sim-
ple but fundamentally important asynchronous algorithm due to Kung [118],
the two-processor zero-finding algorithm. We then show how the specifica-
tion of this algorithm can be adapted to provide fast Boolean circuits for
counting modulo 3, improving a long-standing upper bound [134]. Both of
these algorithms are based on a Fibonacci divide-and-conquer scheme and
are the result of “asynchronous thinking.”

These results cover only a small area in a rapidly growing field of re-
search. For a survey of efficient asynchronous algorithms, see [138, 148].

Throughout this chapter, let # = (v/5 — 1)/2 = 0.618 be the reciprocal
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of the “golden ratio.” Note that 6% + § = 1. Algorithms will be defined by
their transitions between various states, and their complexity will be defined
as the maximum number of transitions required for inputs of a given size.

9.1 Zero-finding

The zero-finding problem is described as follows. Given a continuous func-
tion f having opposite signs at the endpoints of an interval of length L,
locate a zero of f within an interval of length 1. In this section we describe
Kung’s asynchronous two-processor algorithm for the zero-finding problem
[118].

To find the zero, processors determine the sign f at various points in the
interval, reducing the interval of uncertainty while maintaining the invariant
that f has opposite signs at the endpoints. A transition occurs every time
a processor evaluates f at a point. There are two types of states:

e 51(I): The interval of uncertainty has length [/, and a processor is
performing an evaluation on the point in the interval at distance #2! from
the left endpoint.

e Sy(1): The interval of uncertainty has length [, and two processors are
performing evaluations on the points in the interval at distances 62 and 6/
from the left endpoint.

Depending on which processor first completes its evaluation, and the
result of that evaluation, the following transitions are possible:

e 51(1) — 51(621) v S1(01) v S5(1);

e So(1) — 51(6%1) v 52(01).

The algorithm can now be described formally as follows:

Process P; (1 =1,2)

‘While the length of the interval of uncertainty > 1 do
Compute the position of the next evaluation point A
Evaluate f(A)

Update the endpoints and the current state

Theorem 9.1. [118]
The above algorithm solves the zero-finding problem in an interval of
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length L in at most [log, /s L] = 1.44log L transitions. This bound is opti-
mal. o

9.2 Shallow circuits for MODj3

For z € {0,1}", define the weight of x as w(z) = Y =y z;. The Boolean
counting functions MOD&? :{0,1}" — {0,1} are defined by MOD;:) (z)=1
if w(z) = r mod k and 0 otherwise. (Where r is omitted we understand
r = 0.) The circuit size and depth of the counting functions has been of
fundamental interest to the structural complexity theory [67, 178]. In this
section, we show how to construct Us-circuits for M()Da’:;, having small depth
for each n.

A “naive” upper bound for the Us-depth complexity Dy, (MOD&?) of
the counting functions is described by the following result.

Proposition 9.2.
Dy,(MOD{Y) < [1 + logk] - logn.

Proof.
The circuits can be designed recursively by using the identity

k-1
MOD{)(z) = \/ (MOD{I{ZN (L) A MOD{/H(2R)) ,
1=0
where z& and zF are the left and right halves of z, respectively. ]

Recent work by Paterson and Zwick has produced the following global
upper bound.

Theorem 9.3. [156]
DU2(MOD§:’?) < clogn, where ¢ < 4.95logn. O

9.2.1 A circuit design tool

With every Boolean function f : {0,1}* — {0,1}, let us associate a mis-
match bit problem M B(f) involving two players P1 and P0: P1 receives a
string #; € f~1(1); PO receives a string z2 € f~1(0). Their task is to find
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a coordinate 7 such that z1; # zo;. Let C(M B(f)) denote the minimum
number of bits they have to communicate in order for both to agree on such
a coordinate. (Unlike standard problems in communication complexity, the
task of the players here is to solve a search problem rather than a decision
problem.) Karchmer and Wigderson proved the following result.

Theorem 9.4. [101]
For every function f:{0,1}" — {0,1} we have Dy, (f) = C(MB(f)).0

The elegant proof of this result describes very natural constructions, so
that explicit algorithms for M B(f) yield Up-circuit designs for f, and vice
versa. From a protocol for M B(f), we may build a circuit upward from the
output gate, where each internal gate represents one bit of communication
(and each path through the circuit represents a communication sequence).
The details may be found in [101].

9.2.2 A communication algorithm for MOD;

The mismatch bit problem may be described in the following terms. Given
an interval [1, n] which is known to contain the mismatch, locate one of these
mismatches within an interval containing one element (i.e. locate the exact
position of one mismatch).

In our algorithm for M B(MOD3), players communicate the weights
(mod 3) of various substrings of their own strings, reducing the interval
of uncertainty while maintaining the invariant that the weights of the as-
sociated substrings are different. A transition occurs after each two bits of
communication. There are three types of states:

o 51(l): The interval of uncertainty has length /. (For convenience we
will refer to the interval as [1,{].) A player has determined that the weights
of the substrings associated with [0 + 1,!] are congruent (mod 3) and is
communicating this fact, along with the weight (mod 3) of its own substring
associated with [#2] + 1, 61].

e Sp(!): The interval of uncertainty has length [. A player has determined
that the weights of the substrings associated with [0/ + 1,[] are incongruent
(mod 3) and is communicating this fact.

e S3(I): The interval of uncertainty has length /. A player has just
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[ Previous state | Congruence? | Weight (mod 3) | Message | New state |

5'1 or 33 Yes 0 00 Sl
51 or 5'3 Yes 1 01 Sl
51 or 53 Yes 2 10 31
S]_ or 53 No 11 Sz
S 0 00 S
S2 1 01 S3
S2 2 10 S3

Table 9.1: Encoding scheme for M B(MODgn))

communicated an incongruence and is now communicating the weight (mod
3) of its own substring associated with [0/ + 1,1].

Depending on the input strings, the following transitions are possible:

e S1(1) — S1(00) v S2(01);

e So(l) — S3(0%0);

® 53(1) fand Sl(l) Vv Sg(l).

The algorithm can now be described formally as follows:

Players P1, P0 alternately do

‘While the length of the interval of uncertainty > 1
Compute the new interval of uncertainty
Communicate the required message
Update the endpoints and the current state

We can now analyze the performance of the algorithm. First we bound
the communication used for each transition. The following encoding scheme
shows that each transition can be effected using only two bits of communi-
cation. :

Next we bound the number of transitions needed. Consider the changes
possible from each state after & > 3 transitions.

e S1(I) = 51(6F1) v S3(6F1) v S5(8%+10)

o So(l) = 51(8%1) v So(8%1) v S5(6%+11)

e S3(1) = S1(6F-11) v Sy(8%11) v S5(8*%1)
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Since the first state used is either §;(n) or S2(n), it is now straightfor-
ward to see that after k transitions the interval of uncertainty has length
at most max(1,60*n). Hence at most log, jom = l.44logn transitions are
required. We have the following result.

Theorem 9.5.
The problem M B(MODgn)( f)) can be solved using at most 2log; /s n +
O(1) = 2.88logn bits of communication. O

Corollary 9.6.
Dy,(MOD{™) < clogn + O(1), where ¢ = 2/ log(1/6) = 2.88. o

Similar communication algorithms can be designed which lead to depth
3.47logn and 4.88logn Us,-circuits for MOD‘.(;n) and M OD?{), respectively;
see [40] for details.

9.2.3 An explicit construction

Recently Zwick [209] has produced the following explicit description of the
Boolean circuits for MODg") ‘defined by the previous section.

Let F,, denote the m-th Fibonacci number (Fp = F1 = 1,F, = 2,F3 =
3,F; = 5,...). For ¢ = (21,...,2F,) let 2¥ = (21,...,2F,_,) and let
e = (2p,_, +1,...,22). I w(z) = ¢ (mod 3) we abbreviate this as
T = a; otherwise we write ¢ # a.

The circuit is defined recursively by the following identities for a,b €
{0,1,2}.

(z=a)=(z=a)zl =0)V (z = a)(z? = 1) V (z = a)(z! = 2); where
(e # )V (el #£b) = (" # D) A (&P = 0)) v ((&" # b) A (2F
)V (" # b) A (@t = 2)) v (27 # a =) A (27F = 0)) v ((2F
a—b)A (e = 1))V (X7 # a~b) A (2TE = 2))));

(z = a)V (eF # b) = (e # B) A 2"F = 0) v ((&® # b) A (2F
D)V (=5 # ) A = 2) v (57 = a =) A (2FE = 0)) v ((2F
a—b)A (2L = D))V ((XB = a ~b) A (2R = 2)))));

(z = a)A(2zF = b) = ~((z # a) V (aL # b)); and

(z # a)A(zF =b) = ~((z = a) V (al # b)).

S
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Chapter 10

Robust communication

The aim of this chapter is to show how general purpose parallel computation
can continue to proceed correctly even in the presence of randomly occurring
communication failures. We do this by introducing a variant of the Block
PRAM model which is subject to errors in reading and writing to the shared
memory.

10.1 The Faulty Block PRAM

Definition.

A Faulty Block PRAM is a Block PRAM with the additional parameter
¢, such that accesses to locations in shared memory fail independently with
probability ¢. That is, a processor attempting to read alocation may instead
receive an error symbol; and a processor attempting to write into a location
may instead write an error symbol into the location. The parameter ¢ may
be taken to be a function of p.

Such errors may result from either interruptions or corruptions in the
interprocessor network. In practice, the “error symbol” may be implemented
e.g. by using fingerprints (see Section 5.6) or error-checking codes [164].
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10.2 Simultaneous bounds

Using the Faulty Block PRAM model, we can prove asymptotically tight
simultaneous bounds on complexity and fault tolerance for finely granular
problems. These computations can tolerate a certain probability of com-
munication failure while running at optimal speed. In order to make the
computations any more robust, however, they must be slowed down. We
believe the results in this section to be the first bounds of this kind to have
appeared in the literature.

Lemma 10.1. ,
Assume that a computation requires that Q(n) specified locations in
shared memory must be read correctly. At time t, the probability that a

Faulty Block PRAM has not succeeded in performing the computation is
Otr/n),

Proof.
By the Pigeonhole Principle, at time ¢, there is some location which has
been read at most O(tp/n) times. O

Clearly this bound applies to conservative permutation computations,
and to shortcut-based list ranking and tree contraction algorithms.

Lemma 10.2.
An EREW PRAM algorithm taking time [(n,p) can be simulated by a
Faulty Block PRAM in time [-#(n, p) with probability of failure O(#(n, p)¢").

Proof.

For each global variable in the EREW PRAM algorithm we maintain a
block of [ copies on the Faulty Block PRAM, restoring lost copies during
each write step. O

Combining these lemmas with Corollaries 5.20 and 5.24, we have

Theorem 10.3.
Assume conservative and shortcut-based algorithms, and let B be a
Faulty Block PRAM with n/logn processors, latency O(logp) and failure

128




parameter ¢(p) = 0(1/logp). Then:

e B can perform permutation, list ranking or tree contraction in O(log? n)
time with probability of failure exp(—$(log n loglog n)).

e B requires (log® n) time to perform permutation, list ranking or tree
contraction with positive probability of correctness.

¢ Any O(log? n) time algorithm for B to perform permutation, list rank-
ing or tree contraction must fail with probability exp(—O(lognloglogn)).

Proof.
The propositions are applications of Corollaries 5.20 and 5.24. The first
proposition uses Lemma 10.2 and the third proposition uses Lemma 10.1.00

10.3 EREW PRAM simulation

In this section, we show that a Faulty Block PRAM with ¢(p) = 1/logp
can be used efficiently for general PRAM computations, provided that the
Faulty Block PRAM instruction set is extended to include the information
dispersal operation [165].

10.3.1 Information dispersal

Let @, be positive integers with & > . The (o, ) information dispersal
problem is to divide a given data item D into «.pieces such that D can
be reconstructed from any 8 of the pieces. We formalize in the following
definition.

Definitions.

Let W =[0...N — 1] for some N € N. Let < W® > (resp. < W¥ >)
represent the set of unordered a-tuples (B-tuples) of elements from W. A
(a0, %) dispersal function is a mapping d : WY —< W* > with an associated
(B,7) reconstruction function r :< W# >— W7 such that for any array
A € W and any S C d(A) with |S| = 8, r(S) = A. (In computing d and 7,
the sets d(A) and S may be specified as arrays in local memory with their
elements given in any order.)

For integers & > 8 > v > 0, an (a, 3,7) information dispersal proto-
col consists of algorithms for computing a (a,7) dispersal function and an
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associated (8,7) reconstruction function on words in local memory.

Note that an (e, 3,7) information dispersal protocol can be used on files
of any size by segmenting the data into arrays of length ~.

Shamir’s “secret sharing” scheme [175], which uses the idea of polynomial
interpolation over a finite field, is a (e, 3,1) protocol. Recently Rabin [165]
reported an improved (e, 3, B) protocol based on sets of linearly independent
vectors over a finite field.

Theorem 10.4. [165]
For all primes N and all integers @ > > 0, there is a (a, 8, 8) informa-
tion dispersal protocol using words from [0...N —1]. O

When o is not much greater than 3, Rabin’s protocol is “space-efficient”:
the dispersed fragments taken together are only a/f times as long as the
original data. This observation has led Rabin and Lyuu to design PRAM
simulations on the hypercube based on Rabin’s protocol [133, 165].

In order to use information dispersal in efficient PRAM simulations,
the dispersal and reconstruction functions must also be time-efficient. We
can define information dispersal capability in complexity-theoretic terms as
follows.

Definition.

A RAM-based complexity model (e.g. RAM, PRAM, Block PRAM) has
(o, B,7) information dispersal capability if the dispersal function can be com-
puted in time O(a++) and the reconstruction function can be computed in
time O(B + 7).

Compared with corner-turning capability (Subsection 7.5.1), information
dispersal capability is more difficult to justify in a RAM-based complexity
model. In Rabin’s (@,(,0) information dispersal protocol, the dispersal
algorithm takes time O(afB) and the reconstruction algorithm takes time
O(B?%). This complexity may be reduced somewhat by special-purpose hard-
ware or multigauging techniques, or by future algorithmic improvements.
Rabin remarks encouragingly on the feasibility of information dispersal in
real architectures in [165].
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(It should be noted in this context that PRAM simulations using hashing
(e.g. [189, 190]) have proceeded without justifying the assumption that the
hash functions used can be evaluated in constant time. Our simulation result
in the next section proceeds under an analogous assumption.)

10.3.2 The simulation

In order to fully simulate an PRAM computation while making use of in-
formation dispersal in shared memory, some pre- and post-computation is
necessary so that the input and output data are specified in undispersed
form. Our simulation result refers to intermediate steps of PRAM compu-
tations.

Theorem 10.5.

Let € and k be positive constants. Then one intermediate step of an
EREW PRAM computation with ¢ processors and ¢* memory can be sim-
ulated in O(gq/p) steps with probability 1 — exp(—Q{min(g/p,—llog$ —
elogp)}) by a Faulty Block PRAM with p processors, latency I, failure
parameter ¢ and (2,1,1) information dispersal capability, provided that
lp1+e <q.

Proof sketch.

We adapt the simulation of Theorem 7.7 as follows. Without loss of
generality, assume that [, p and g are powers of two. The array A[0...4¢—1]
used to route messages among the processors is simulated by A’[0...8¢—1].
A and A’ are subdivided into 4¢/! pieces each of length [ and 2/, respectively.
The idea is to let each piece of A’ contain the fragments of the corresponding
piece of A, using a (2[,1,!) information dispersal protocol. Each fragment is
represented by one word.

In the simulation of Theorem 7.7, each access by a processor to the
shared memory is to a set of whole pieces:

¢ Each home block A[4ig/p...4(i + 1)g/p — 1] is a set of 4¢/pl whole
pieces.

e The permutation algorithm of Theorem 5.11 consists of basic permu-
tation operations of the following two forms:

— Fach processor reads 4¢/pl blocks of size [ (i.e. whole pieces) and
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writes them into their new locations.
— Each processor reads and permutes a block of size 4¢/p (i.e. 4¢/pl
consecutive whole pieces) and writes it back.

We can therefore replace each access to shared memory as follows:

e For each read from a piece of A, instead read from a piece of A’ and
reconstruct the piece of A.

¢ For each write into a piece of A, instead disperse the data and write
the 2! fragments into a piece of A'.

This simulation fails only if the original simulation of Theorem 7.7 fails,
or if at some read step, some processor does not have enough (i.e. at least
l) fragments to reconstruct a piece of A.

Each fragment is lost with independent probability ¢, so we can use
Lemma 7.6 directly to estimate the probability of failure in reconstruct-
ing a given piece. If ¥; = {Fragment ¢ lost}, this is Prob{} ;Y; > {} <
(e-1/C4)/(2¢)1/@9))26 = exp(Q(llog §)).

During the simulation, there are at most ¢/l piece-reconstructions. The
overall result follows. O

For illustration, we may consider the parameters for the model B in Theo-
rem 10.3. The following corollary shows that our simulation (asymptotically)
matches the fault-tolerance properties of Rabin’s PRAM simulation for the
hypercube (see [165] and Section 3.3.5). In particular, the simulation has
failure probability o(1) for all polynomial-time computations (7' = qo(l)).

Corollary 10.6.

A Faulty Block PRAM with p processors, latency [ = log p, failure pa-
rameter ¢ = 1/logp and (2logp,logp,log p) information dispersal capabil-
ity can simulate one step of an EREW PRAM with p'*¢ processors and p*
memory in time O(p®) with probability of failure exp(—$(log ploglog p)).O0

Many of the Block PRAM algorithms of Chapter 5 have the property
that each access by a processor to the shared memory is to a set of whole
pieces. We will say that such algorithms are piecewise coarse. In these cases
information dispersal can be used without going through the simulation of
Theorem 10.5, giving the following corollary.
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Corollary 10.7.
For Ip < n, [ = O(logn) and ¢ = 1/11+2(1), the following Block PRAM
algorithms can run in (asymptotically) the same time on a Faulty Block

PRAM (I, p, ¢) as on a Block PRAM (I, p) with probability 1—exp(Q(/log ¢)):

e Fast Fourier Transform (Theorem 5.31);
e Matrix multiplication (Theorem 5.33); and
e Sorting (Theorem 5.35).

Proof sketch.

Each access to the shared memory is supported by (2!,/,!) informa-
tion dispersal. The initial input and final output steps must be handled
specially. Let the input/output size be m. The input is read [ times;
the probability that any location in the input has not been successfully
read is O(m - ¢') = exp(Q(llog¢)). The output is written by alternately
writing the (reconstructed) output in blocks of length ! and then read-
ing each block to make sure that all locations have been written success-
fully. The probability that any block fails to be written after [ iterations is

O(m/1-(1- $)') = exp(Qllog )). 0
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Chapter 11

Conclusions

This thesis has contributed results in two complementary areas of study.
First, we have determined the granularity of several specific algorithms and
problems, as defined in Section 4.2.1. Second, we have shown that gran-
ularity is of fundamental importance among the many practical concerns
relating to the state of the art in general purpose parallel computation.

11.1 A taxonomy of granularity

In Section 4.2.1, we introduced a simple and meaningful quantitative def-
inition of granularity based on Block PRAM complexity. Our notion of
communication overhead allows the granularity of an algorithm to vary (as
it does in practice) with problem size, number of processors and communi-
cation latency. This refines previous definitions of granularity [96, 114, 173].

Although there is a three-dimensional space of parameters to explore
for each algorithm, we can use the taxonomy given in Section 4.2.1 to de-
termine the granularity of an algorithm from its EREW PRAM and Block
PRAM complexities. Using the algorithms and lower bounds in Chapter 5
and 6, we are able to give a detailed classification of several problems and
algorithms according to their granularities. The granularity of the prob-
lems studied in this thesis depends on the relationship between the latency
and the work/processors ratio. Table 11.1 illustrates this dependency for

I = O(log p), p = O(w).
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Work/Processors
Algorithm! [ Work Coarse I A /Coarse I A/Fine | Fine
Matriz transpose | ©(n) [+ai) Q) O(logl) | O(1)
Hj hashing o(n) [+ Q) O(logl) | O(1)
Skewing O(n) [1+9(1) Q) O(logl) | O(1)
Prefiz sums O(n) Q(%/logl) | Q(*/1og? 1) o(l) never
String matching® | O(n) Q(1?/logl) | Q(1%/1og? 1) o) never
Matrix product® | ©(n?) QI%/logl) | Q(I%/1log? 1) O(llogl) | never
Connectivity* O(mlogn) | Q(I2/logl) | Q(I%/1og? 1) o) never
FFT O(nlogn) | Q(?) Q(1?) o(1?) never
Sorting O(nlogn) | Q%) Q1% logl) O(llogl) | O(1)
Permauting O(n) exp(Q(D) | exp(Q(l/logl)) | 1+tO) | O())

Table 11.1: Granularity of algorithms for | = O(logp), p = O(w)

Examples. An implementation of the graph connectivity algorithm of
Theorem 5.26 will be almost fine for mlogn/p = O(!); i.e., when p = Q(m),
since the Block PRAM algorithm will take at least Q(llogn/logl)/O(l +
logn)) = Q(!/log!) times longer than the Shiloach-Vishkin algorithm.

Since the skewing algorithm of Theorem 6.6 is optimal, the parameters
in Table 11.1 relate to the granularity of the problem of skewing. Skewing
can be performed with coarse granularity provided that n/p = Q(I1+2(1);
i.e., when p = n/ log!*(1) p, and this bound is best possible.

11.2 Granularity in the implementation of algo-
rithms

Years of experience in the mapping of algorithms onto specific parallel archi-
tectures have demonstrated the fundamental importance of the granularity
issue. In this thesis, we have presented relationships between granularity
and major practical issues in general purpose parallel computation. We

1Optimal algorithms in italics
2Randomized

3Using +, x

‘For m = p1+2(1)
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have introduced the prospect of locality-preserving simulations, which would
allow coarse-grained implementations of Block PRAM algorithms to run ef-
ficiently on hashed shared memory. We have also shown how fine and coarse
granularity can each be exploited to provide for tolerance of communication
failures. We can summarize the recommendations of this thesis for fine- and
coarse-grained implementations of algorithms as follows.

Fine-grained implementations of algorithms:
e Should use general simulation techniques
¢ Can naively achieve optimal fault tolerance

e Suggest the need for hardware support for arbitrary pipelining and /or
pointer jumping

¢ General simulation techniques can achieve sufficient fault tolerance for
practical purposes
Coarse-grained implementations of algorithms:

e Should be performed directly or with locality-preserving simulation
techniques

e Support the choice of the Block PRAM as a bridging model for general
purpose parallel computation

e Should use partitioned shared memory when multitasking

¢ Piecewise coarse implementations can be modified easily to achieve
optimal fault tolerance

11.3 'Topics for future research

In this section we suggest a number of topics for further research in areas
related to this thesis.

Improving universal hash families: Siegel’s universal hash families Hj
[177] can be computed in constant time and sublinear space and are there-
fore suitable for proving asymptotic simulation results. However, the func-
tions are constructed from expander graphs and large constant factors are

136




involved. Until these constants are improved, it is likely that the families
Hy-H4 will continue to be preferred in practice.

In view of the importance of granularity in parallel computation, we
suggest that it is now appropriate to consider locality preservation as a
fundamental property of universal hash families. We have seen that Hy, a
2,-wise independent hash family, has optimal locality-preserving properties.
The precise relationship between the independence and complexity proper-
ties of hash families will be a difficult but rewarding study. In particular,
the hash function f(z) = 2? mod n seems as hard to perform on the Block
PRAM model as any permutation. Because of the growing popularity of the
Hg families, it would be an interesting candidate for improved lower bounds.

Improving information dispersal algorithms: As noted in Section 10.3.1,
information dispersal capability is not yet available to support our simulation
result for the Faulty Block PRAM (Theorem 10.5). If information dispersal
is to be used in practice, faster dispersal and reconstruction algorithms will
be of considerable interest.

Assessing the costs and benefits of multigauging architectures: As dis-
cussed in Section 7.5, multigauging can be used to increase effective paral-
lelism by allowing the effective word size of a multiprocessor to be matched
to the word size required by an algorithm. Some possible applications
of multigauging for specific network architectures have been suggested in
[150, 172, 181], but a more systematic study is needed in the context of
general purpose computation. We have suggested the Block PRAM model
as a suitable network-independent model for assessing the costs and benefits
of multigauging architectures.

Proving Block PRAM lower bounds: Fme granularity (in the sense of
our definition) has important consequences in parallel computation, so that
further Block PRAM lower bounds will be of interest. Our lower bound
reductions suggest that performing general permutations may become the
canonical hard problem for the Block PRAM model of computation.

Designing efficient Block PRAM algorithms: As we have seen in this the-
sis, efficient Block PRAM algorithms are a suitable foundation for portable
and scalable parallel software. Block PRAM algorithms also identify locality-
preserving patterns of communication which can be used in the construc-
tion of more advanced algorithms. In this thesis, we have demonstrated
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the usefulness of prefix sums computations and rational permutations as
basic operations. It is likely that further efficient Block PRAM algorithms
will yield other useful and interesting primitives for general purpose parallel
computation. The list ranking bottleneck described in Section 5.3 is one
significant challenge to this study.

Designing efficient PRAM algorithms: There is much scope for improve-
ment even in designing algorithms for the ideal PRAM models. The transi-
tive closure bottleneck and the question P =?NC, as described in Section
2.3, are two of the many major challenges to theoretical research on parallel
complexity.

Designing efficient asynchronous algorithms: Although we have demon-
strated close relationships between bulk-synchronous models of computation
and the Block PRAM model, little is known about the relationship between
general asynchrony and communication locality. The design of asynchronous
algorithms seems to require a different style of problem solving from the
design of algorithms for the PRAM, Block PRAM and bulk-synchronous
models. Chapter 9 illustrates this pattern of “asynchronous thinking” with
a fundamental case study.

11.4 Publication history

Unless otherwise indicated, all results in this thesis are my own independent
* work.

o The results in Chapter 9 are based on research completed in June 1989
and published in [40]. The work improves results presented in my quali-
fying dissertation [39] and at the Fifth British Colloquium on Theoretical
Computer Science (London, April 1989).

o The results in Sections 5.2-5.5, completed in November 1989, were
presented at the Sixth British Colloquium on Theoretical Computer Science
(Manchester, April 1990) and now appear as a joint paper with William F.
"McColl in [46].

e The results in Chapter 10, which were completed in November 1990,
were presented at the International Conference on Sets, Graphs and Num-
bers (Budapest, January 1991) and appear as [43].

e The results in Sections 6.1-6.2 and Chapter 7, completed in Decem-
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ber 1990, were presented at the Seventh British Colloquium on Theoretical
Computer Science (Liverpool, April 1991) and appear as [42].

¢ The results in Chapter 8 were completed in February 1991 and will
appear as [44].

e The results in Sections 5.1 and 6.3 were completed in March 1991, and
the results in Section 5.1.1 appear as [41].

These results have also been presented at workshops in Catania and
Warwick, and departmental seminars in Oxford, Southampton, Warwick
and Austin. A review paper based on the results in this thesis will appear
as [45].
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