ARTICLES

COMPUTATIONAL COMPLEXITY AND THE
SCOPE OF SOFTWARE PATENTS

Andrew Chin"

ABSTRACT: Recent developments in patent law, most notably the effective nuliification
of the Supreme Court’s 1972 Benson decision excluding mathematical algorithms from
patentable subject matter, have attempted to reflect an increasingly sophisticated approach
to computer science and technology. Despite this, the patent system has continued to
disregard computational complexity, an issue of central concern to computer scientists and
of strategic importance to U.S. information technology policy. This Articie proposes a
development of patent scope doctrine that would introduce the issue of computational
complexity into patent infringement analysis, thereby encouraging more efficient algorithm
design, enhancing public benefits from complementary improvements in computer hardware,
and strengthening the institutional competence of the patent system.

CITATION: Andrew Chin, Computational Complexity and the Scope of Software Patents,
39 Jurimetrics J. 17-28 (1998).

The past twenty-six years have not been kind to Gottschalk v. Benson.'
Developments in computer science and the software industry have blurred the
analytical boundary between “mental processes™ and computer hardware,

* Andrew Chin, B.S. (Texas), 1987; D. Phil. (Oxford), 1991, 1.D. (Yale), 1998, is
presently a law clerk to Judge Henry H. Kennedy, Jr. of the U.S. District Court for the
District of Columbia, andrewchin@iname.com. The views expressed are those of the author
only. He would like to thank Stephen Kahn and Mark Lemley for helpful suggestions.

1. 409 U.S. 63 (1972).

2. Id. at 67-68. According to Chisum, the “mental steps” doctrine originated in Ex
parte Meinhardt, 1907 Comm’n Dec. 237 (cited in 1 DONALD S. CHISUM, CHISUM ON
PATENTS § 1.03[6], at 1-78.1 (1990)).

FALL 1998 17

Hei nOnline -- 39 Jurinetrics 17 1998-1999

Chin

rendering incoherent the Supreme Court’s rationale for excluding mathematical
algorithms from patentable subject matter under 35 U.S.C. § 101.° Thus, in the
1994 Alappat decision,* the Federal Circuit held that mathematical algorithms were
patentable subject matter because the claims as a whole were directed to a machine,’
and the method disclosed had a “useful, concrete, and tangible result.” This
summer, in State Street Bank,” the court further held that the fact that an algorithm’s
result was numerical would not be an obstacle to patentability.® Consequently,
careful applicants for software patents can now circumvent the rule of Benson by
drafting means-plus-function claims directed to a programmed computer’ or
software fixed on digital storage media.'

Many commentators have characterized the trend toward patentability of
mathematical algorithms as reflecting a growing understanding of how computers
work'! and a greater appreciation of the “useful” work computers do.'? Despite this

3. The statutory categeries of patentable subject matter are process, machine,
manufacture, and composition of matter or useful improvement thereof. 35 U.S.C. § 101.

4. In re Alappat, 33 F.3d 1526 (Fed. Cir. 1994) (en banc).

5.1d at 1543-45.

6. State Street Bank v. Signature Fin. Group, 149 F.3d 1368, 1373 (Fed. Cir. 1998).

7.1d.

8. See id. at 1375.

9. See, e.g., Lawrence Kass, Computer Software Patentability and the Role of
Means—Plus Function Format in Computer Software Claims, 15PACEL. REV. 787, 86668
(1995) (advising practitioners to draft software means-plus-function claims divided into
interrelated means). Gregory Stobbs has suggested that the “common thread” of the
patentable subject matter cases is human control; that is, a claim will be found unpatentable
under 35 U.S.C. § 101 if and only if there is no human control over the existence of what is
claimed. See GREGORY A. STOBBS, SOFTWARE PATENTS 328-29 (1995). This rule also
guides practitioners toward drafting claims directed to programmed computers or software
fixed on media rather than abstract mathematical algorithms.

10. See In re Beaurcgard, 53 F.3d 1583, 158384 (Fed. Cir. 1995) (noting Patent
Office’s finding that “computer programs embodied in a tangibie medium, such as floppy
diskettes, are patentable subject matter under 35 U.S.C. § 101"); United States Patent and
Trademark Office, Examination Guidelines for Computer-Related Inventions, §1 Fed. Reg.
7478, 7482 (1996) (“[A] claimed computer-readable medium encoded with a computer
program defines structural and functional interrelationships between the computer program
and the medium which permit the computer program’s functionality to be realized, and is
thus statutory.”).

11. See, e.g., Maria T. Arriola, In re Alappat and Beyond: A New Approach to the
Patentability of Mathematical Algorithms and Computer Programs in the United States?,
5 FED. CIR. B.J. 293, 309 (1995) (“The In re Alappat court’s revivification of the new
machine argument reflects technical reality.”); James R. Goodman et al., The Alappat
Standard for Determining that Programmed Computers are Patentable Subject Matter, J.
PAT. & TM. OFF. SOC., Oct. 1994, at 771 (explaining the scientific theory in support of the
Alappat statement that “programming creates a new machine, because a general purpose
computer in effect becomes a special purpose computer once it is programmed”).

12. See, e.g., Robert C. Scheinfeld & Lawrence T. Kass, 4 Computerized Business

18 39 JURIMETRICS

Hei nOnline -- 39 Jurinetrics 18 1998-1999

Computational Complexity and the Scope of Software Patents

new sophistication, however, the recent Federal Circuit decisions adopt a simplistic
definition of “useful”: computer software is deemed useful if it “constitute[s] a
practical application of an abstract idea.”"’ This definition has the merit of
following the letter'* (though not the spirit'®) of Supreme Court precedent, but it
fails to account for the rapid developments in the complementary technology of
computer hardware. The resulting patent regime is misaligned with the policies at
the heart of the Patent Act: it rewards mathematical algorithms that do not
substantially advance the art of computing, and discourages innovation along lines
that would most rapidly push forward the frontiers of science and technology.

It did not have to be this way. In his famous 1986 article advocating the
patentability of algorithms, Donald S. Chisum predicted that extending the patent
system to software would encourage “the formulation of distinctly new and superior
techniques” for unlocking the potential of technological advances in computer
hardware.'® The public would benefit because “[b]etter algorithms enable com-
puters to be used more efficiently and effectively.”"’

These aspirations for the patent system suggest that the definition of “useful”
software in the patentability inquiry should have turned in part on the efficient
exploitation of technological advances in computer hardware. It is surprising, then,
that the extensive literature on software patents thus far has failed to acknowledge
the relevance of computational complexity to the patentability analysis.

Now that State Street Bank has opened the § 101 floodgates to every piece of
software that has “practical application,” it is necessary to look to patent scope
doctrine, rather than subject matter analysis, to align the software patent system with
national priorities. Fortunately, it is within patent scope doctrine that a
straightforward solution exists.

This Article describes a doctrinal development that would establish asymptotic
computational complexity as an issue of central importance in determining the
scope of software patents, without disturbing existing case law. Specifically, I
propose that the reverse doctrine of equivalents should allow as a defense to

Method is Patentable Subject Matter, N.Y. L.J., Aug. 6, 1998, at 1 (concluding that State
Street Bank simplifies and focuses the test for patentability of a mathematical algorithm on
its “practical utility™).

13. See State Street Bank, 149 F.3d at 1373 (citing In re Alappat, 33 F.3d at 1544 and
Arrhythmia Research Tech. Inc. v. Corazonix Corp., 958 F.2d 1053 (Fed. Cir. 1992)).

14. See Diamond v. Diehr, 450 U.S. 175, 182 (1981) (*It is for the discovery or
invention of some practical method or means of producing a beneficial result or effect, that
a patent is granted, and not for the result or effect itself.””) (emphasis added).

15. Benson has never been overruled. See generally Pamela Samuelson, Benson
Revisited: The Case Against Patent Protection for Algorithms and Other Computer
Program-Related Inventions, 39 EMORY L..J. 1025 (1990) (arguing that Benson should still
be regarded as good law).

16. Donald S. Chisum, The Patentability of Algorithms, 47 U.PITT. L. REV. 959, 1014
(1986).

17. Id.

FALL 1998 19

Hei nOnline -- 39 Jurinetrics 19 1998-1999

Chin

software patent infringement those improvements in computational complexity that
are superlinear in the parameters of the problem solved by the underlying
algorithm.'® The Article offers four independent rationales for such an approach.
First, the modern understanding of the nature of computation requires some
nontrivial efficiency standard for patentability. Second, since the beginning of the
computer age, asymptotic complexity has been the most significant organizing
principle in the design and analysis of efficient algorithms, generating a vital body
of priorart. Third, areverse doctrine of equivalents based on asymptotic complexity
would encourage efficient algorithm design, thereby aligning the software patent
system with national strategic priorities relating to computing, information
processing, and problem solving. Finally, an asymptotic complexity standard would
provide coherence to patent scope doctrine in a technological field that demands the
highest possible degree of consistency and rigor.

Before further discussing this proposed refinement of the Alappat-State Street
Bank doctrine, it is worth noting that Chisum’s policy arguments and the Federal
Circuit’s decisions remain controversial. Several scholars, most notably Pamela
Samuelson, have raised serious objections to software patents.'” In view of the
growth and creativity exhibited by the software industry under the copyright regime
of the 1970s and 1980s, Samuelson concludes that “patent protection is not
necessary for the software industry to thrive.”®® Samuelson also criticizes the
institutional incompetence of the patent system in evaluating computer program-
related innovations.?!

18. My proposal would require the courts to exercise the reverse equivalents doctrine
much more actively than they have in the past. See Ethyl Molded Products Co. v. Betts
Package, Inc., 9 U.S.P.Q.2d 1001, 1026 (E.D. Ky. 1988) (“The reverse doctrine of
equivalents, although frequently argued by infringers, has never been applied by the Federal
Circuit.”); Phillips Petroleum Co. v. United States Steel Corp., 673 F. Supp. 1278, 1350 (D.
Del. 1987) (noting that reverse doctrine of equivalents is rarely successfully asserted), aff"d,
865 F.2d 1247 (Fed. Cir. 1989). This Article presents compelling reasons for them to do so.

There are other ways to perform the reverse equivalents calculus. See, e.g., Timothy J.
Douros, Lending the Federal Circuit a Hand: An Economic Interpretation of the Doctrine
of Equivalents, 10 HIGH TECH. L.J. 321, 332-45 (1995) (arguing that analysis should
consider level of research investment and commercial viability). However, the ultimate
purpose of any such analysis must be to “ensure[] that all the purposes of the doctrine of
equivalents, in light of the goals of the patent system, are served.” Id. at 350. This Article
argues that these purposes are best served by a doctrine of software patent scope that takes
into account the asymptotic complexity of the underlying algorithms. See infra Part II1.

19. See, e.g., Pamela Samuelson et al., A Manifesto Concerning the Legal Protection
of Computer Programs, 94 COLUM. L. REV. 2308 (1994); see also Rafael X. Zahralddin, The
Effect of Broad Patent Scope on the Competitiveness of United States Industry, 17 DEL. J.
Core. L. 949 (1992).

20. Samuelson, supra note 15, at 1135-36.

21.Id. at 1138-40 (criticizing Patent Office and Court of Customs and Patent Appeals).
Samuelson also argues that the risk of submarine patents and the cost of cross-licensing are
prohibitively expensive in the software field. /d. at 1136-38. However, these arguments

20 39 JURIMETRICS

Hei nOnline -- 39 Jurinetrics 20 1998-1999

Computational Complexity and the Scope of Software Patents

The consideration of computational complexity in the determination of patent
scope effectively limits the patentability of algorithms and goes some way toward
answering these objections. Even in a thriving software industry, the patent system
can serve to encourage the development not just of more software, but of more
efficient software. Also, efficiency standards for patentability will improve the
patent system’s institutional competence by requiring the Patent Office to analyze
advances in software technology in the same way as computer scientists do.
Computational complexity theory thus has much to offer both sides of the software
patent debate.

I. THE NECESSITY OF A MINIMUM
EFFICIENCY STANDARD

The Supreme Court’s statement in Benson that amathematical algorithm is akin
to a “phenomenon of nature” and therefore is not patentable® focused the early
debate over the patentability of software on the epistemological nature of
mathematics.” Advocates of software patents argued that mathematical algorithms
were invented by the human mind,* while the courts maintained that mathematics
consisted of discovered laws of nature.” In 1994, however, the Alappat court pre-
empted the debate by construing Benson narrowly, limiting its holding to inventions
that represent “nothing more than a ‘law of nature,” ‘natural phenomenon,’ or
‘abstract idea.””?® Thus, by drafting claims directed to machines rather than
disembodied mathematical concepts, a patent applicant need not weigh in on the
question of whether the underlying mathematics was discovered or invented.

This early focus on the epistemology of mathematics may have obscured a
second fundamental objection to software patentability that is even more specific

implicate the much larger question of whether the patent term should vary across different
industries, and will not be addressed here.

22. Benson, 409 U.S. at 67.

23. For a summary of the debate in the mathematical and philosophical literature, see,
for example, ROBERT PATRICK MERGES, PATENT LAW AND POLICY 95-97 (1992).

24. See, e.g., Chisum, supra note 16, at 980.

25. See Irah Donner, Patenting Mathematical Algorithms that “Embrace” Mother
Nature, COMPUTER LAW., May 1992, at 1, 9 and n.128 (criticizing the Iwahashi court’s
finding that “mathematical algorithms . . . like laws of nature, are not patentable subject
matter” as “preoccupfation] with the mathematical language and with the notion that
mathematics always represents laws of nature™) (quoting Ir re Iwahashi, 888 F.2d 1370,
1374 (Fed. Cir. 1989)). Donner is also critical of the case law between Benson and Iwahashi.
See id. at 4-9.

26. In re Alappat, 33 F.3d 1526, 1544 (Fed. Cir. 1994) (emphasis added); accord
Donner, supra note 25, at 3—4 (“Even if we assume that the . . . law of nature rules were
applied in Benson, these rules do notrequire all mathematical algorithms to be unpatentable,
Rather, Benson only held that algorithms which represent laws of nature or truths are not
statutory subject matter.”).

FALL 1998 21

Hei nOnline -- 39 Jurinetrics 21 1998-1999

Chin

to the field of algorithmic inventions: the fact that since 1931, there has been
enabling prior art specifying a method for performing every possible computer
algorithm. Specifically, for any finite set of computers bounded by finite time and
space, it is possible to construct a universal algorithm that simulates every program
that could run on any of said computers, also within finite (but much greater) time
and space.”” Admittedly, such a construction would be prohibitively time- and
space-consuming for almost all practical purposes. Nevertheless, given any problem
that is amenable to computer solution and unbounded computational resources, the
universal algorithm will eventually solve it in finite time and space.

This abstract theoretical result has practical consequences for the patentability
of software because claims directed to computer programs should never be
interpreted so broadly as to read on the universal algorithm. To avoid such an
interpretation, the scope of software patent claims must be limited by time resources
(measured, for example, in instruction cycles), space resources (measured, for
example, in bytes of RAM), or underlying models of computation (for example,
computer architecture and basic instruction set).

Because the universal algorithm requires so much time and space, the
efficiency hurdle it sets for patentable software is de minimis. Nevertheless, the
formal necessity of an efficiency standard identifies computational complexity as
an issue of analytical significance under the Patent Act.?® The patent system must
respond to this issue, either by requiring software patent claims to delimit their own
efficiency standards, or by establishing a judicially created doctrine that considers
efficiency in construing software patent claims. This Article advocates the latter
approach—specifically, the establishment of an asymptotic efficiency standard for
the reverse doctrine of equivalents—for reasons that I will now elaborate.

II. ASYMPTOTIC COMPUTATIONAL COMPLEXITY

Computer scientists state the efficiency of an algorithm by describing its
asymptotic computational complexity.” For example, consider the problem of
sorting numbers on a computer that can perform only two basic steps: comparing
two numbers; and if the two numbers are out of order, interchanging them. The

27. The proof of Kurt Godel’s famous Incompleteness Theorem, inter alia, establishes
a one-to-one correspondence between the integers and the set of all possible algorithmic
computations (known in formal logic as “recursive processes™). See Recursive Functions
(visited Sept. 16, 1998) <http:// www.mtnmath.com/book/ node56.html>. Thus, “one can
with a single recursive process simulate all recursive processes.” /d. This universal recursive
process is fully specified by the details of Godel’s proof, which have been studied by several
generations of computer scientists. See KURT GODEL, ON FORMALLY UNDECIDABLE
PROPOSITIONS OF PRINCIPIA MATHEMATICA AND RELATED SYSTEMS (B. Metzer trans., 1962);
ERNEST NAGEL & JAMES R. NEWMAN, GODEL’S PROOF (1958).

28.35 U.S.C. § 102-03 (1994).

29. See generally THOMAS H. CORMEN ET AL., INTRODUCTION TO ALGORITHMS 23
(1990).

22 39 JURIMETRICS

Hei nOnline -- 39 Jurinetrics 22 1998-1999

Computational Complexity and the Scope of Software Patents

simplest way of sorting » numbers on such a computer, “bubble sorting,” yields an
algorithm with a running time of about » * steps.’® In 1983, however, three
Hungarian computer scientists announced that they had invented an algorithm
capable of sorting » numbers in no more than cnlogn steps, where ¢ is a known
constant.’' They reported this result to the computer science community as “an
O(nlogn) sorting network,* because they considered the value of the constant ¢ to
have very little significance in the context of what they had achieved.

Computer algorithm design and analysis has been directed toward asymptotic
measures of computational complexity since at least the early 1960s.” Today, more
than 70,000 academic publications exist on the asymptotic computational
complexity of computer algorithms.** Courses emphasizing asymptotic computa-
tional complexity of algorithms are a standard part of the training of virtually every
professional computer programmer, via the undergraduate and graduate computer
science curriculum. In short, the use of asymptotic computational complexity to
describe not only the efficiency of computer algorithms, but their overall value to
the computer science community, is an industry standard.*

Of course, the patent system is not obligated to follow the industry standard.
Congress is free to design a patent scheme to promote the progress of the useful

30. See DONALD E. KNUTH, SORTING AND SEARCHING (1973).

31. See M. Ajtai et al., 4n O(n log n) Sorting Network, in PROCEEDINGS OF THE 15TH
ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING | (1983); see also CORMEN, supra
note 29, at 653 (finding the value of ¢ to be in the thousands).

32. See Ajtai, supra note 31, at 1.

33. By 1965, computer scientists identified as tractable mathematical problems for
which a polynomial-time algorithm was known, using asymptotic measures of computational
complexity in their analysis. See A. Cobham, The Intrinsic Computational Difficulty of
Functions, in INTERNATIONAL CONGRESS FOR LOGIC, METHODOLOGY, AND PHILOSOPHY OF
SCIENCE 24 (Yehoshua Bar-Hillel ed., 1964); see generally J. Edmonds, Paths, Trees, and
Flowers, 17 CAN. J. MATH. 449 (1965) (introducing concepts of “good” and “bad”
algorithms defined in terms of asymptotic computational complexity). The use of asymptotic
measures of computational complexity probably dates back to the earliest computers. This
work naturally led to the cataloging of algorithms using a taxonomy based on asymptotic
computational complexity (still a current practice}. See J. Hartmanis & R. E. Stearns, On the
Computational Complexity of Algorithms, 117 TRANS. AM. MATH. SOC’Y. 285 (1965).

34. For a partial bibliography listing more than 74,000 articles, see <http://theory.lcs.
mit.edu/~dmjones/hbp/ipl/ipl>. Asymptotic complexity measures are also reported in the
standard source books for computer programmers. See, e.g., WILLIAM H, PRESS ET AL,
NUMERICAL RECIPES IN C (1992).

35. Thus, asymptotic improvements in computational complexity are recognized, at
least by the computer science community, as conceptual breakthroughs of the kind that have
traditionally warranted broad patent scope under the pioneer invention doctrine. See
Christina Y. Lai, 4 Dysfunctional Formalism: How Modern Courts are Undermining the
Doctrine of Equivalents, 44 UCLA L. REV. 2031, 204041 (1997) (describing carly
development of the pioneer invention doctrine).

FALL 1998 23

Hei nOnline -- 39 Jurinetrics 23 1998-1999

Chin

arts*® by rewarding software inventions according to its own rational criteria. The
nation’s science and technology priorities, however, would be best served by a
patent law that recognizes the critical importance of asymptotic computational
efficiency in software engineering.

II1. COMPUTATIONAL EFFICIENCY
AS A NATIONAL PRIORITY

Technology policy should advance the state of the art.*” In computing, the state
of the art is measured by the range and size of problems that can be solved using
available resources.’® A computer program advances the art if it enables a computer
system to solve a previously unsolvable problem. Patent scope doctrine aligns itself
with this policy when it rewards software that advances the art in this way.*

36. See U.S. CONST. art. I, § 8.

37. This policy is implicit in § 102 and § 103 of the Patent Act: the patent system
refuses to reward claimed inventions that fail to advance the art in a nonobvious way. See
Patent Act, 35 U.S.C. § 102-03 (1994).

38. This definition of the state of the art in computer technology is supported by our
classical understanding of computers, as well as the objectives of practitioners in the field.
See, e.g., FUNK & WAGNALLS STANDARD ENCYCLOPEDIC DICTIONARY 278 (1968) (defining
computer as “any of various machines equipped . . . for the high-speed performance of
mathematical and logical operations, or for the processing of large masses of coded
information”); MICHAEL R. GAREY & DAVID S. JOHNSON, COMPUTERS AND INTRACTABILITY:
A GUIDE TO THE THEORY OF NP-COMPLETENESS 7-8 (1979) (assessing effect of
improvements in computer technology on “the largest problem instance solvable in one
hour” using algorithms with varying asymptotic complexities).

In the context of the technology policy underlying intellectual property law, the value
of a piece of software as a factor of production lies in its power to solve a particular set of
problem instances. This problem-solving imperative is perhaps most vividly illustrated by
the U.S. government’s strategic computing programs. Strategically significant computational
problems, characterized by the size of the data to be processed and the complexity of the
problem to be solved, include molecular modeling, human genome mapping, weather
forecasting, pharmaceutical testing, fluid dynamics, signal-image processing, environmental
quality modeling, and electronics. See Department of Defense Scalable Software Initiative
(last modified Jan. 28, 1998) <http://www.hpcmo.hpc.mil/Htdocs/CHSSI/chssi-intro.htm!>.

39. See John R. Thomas, The Question Concerning Patent Law and Pioneer Inventions,
10 HiGH TECH. L.J. 35, 97 (1995) (arguing that “pioneer status” inquiry governing patent
scope doctrine should turn on social impact of invention and goals of federal regulatory
policies); ¢f Riley M. Sinder et al., Promoting Progress: The Supreme Court’s Duty of
Care, 23 OHIO N.U. L. REV. 71, 79 (1996) (interpreting limitation of software patents to
hardware-directed claims in Diehr and Alappat as reflecting concern that patentees would
“repress the [abstract] problem-solving efforts” of later programmers). However, the
subsequent Beauregard case and Patent and Trademark Office guidelines suggest that the
hardware requirement may be satisfied without reference to a particular computer
architecture, and thus may exacerbate the tension between software patents and abstract
problem-solving. See supra note 10.

24 39 JURIMETRICS

Hei nOnline -- 39 Jurinetrics 24 1998-1999

Computational Complexity and the Scope of Software Patents

The patent term is at odds with this problem-solving imperative. Depending on
the scope of a software patent, the patentee may have the right to exclude others
from using the most efficient methods available for solving a problem. For example,
if the optimal algorithm is patented, then there is a nonempty set of problem
instances that will not be solved without the patentee’s consent. This social cost
must be balanced against the eventual social benefit that will accrue when the
algorithm enters the public domain,

A complicating factor in performing this balancing is the ongoing improvement
of computer hardware technology, which continually changes the set of tractable
problem instances independently of advances in computer software. However,
under the standard assumption that hardware advances, relative to time and money
resources, can be modeled by exponential increases in processing speed and
memory capacity,* the cost-benefit analysis leads to an asymptotic computational
complexity standard for patent scope.

To see this, note that the assumption of exponential improvement implies that
the number of basic computation steps that can be performed with a given set of
resources will increase by some constant factor ¢ during the course of a fixed patent
term. Suppose that a patent has recently issued for a piece of software that solves
a certain problem P. Suppose further that the underlying algorithm A4, solves all
instances of P of size n within 10+ basic computational steps. Consider two new
algorithms 4, and 4,, which have running times of 100»? and », respectively.

Because algorithm A4, has a faster asymptotic running time than 4,, software
based on algorithm 4, should be held not to infringe the patent by the reverse
doctrine of equivalents. This is because no matter what the value of ¢ is, there are
problem instances that can be solved now with algorithm A, that could not be
solved even at the end of the patent term with algorithm 4,.*' To find infringement

40. The federal government’s own strategic computing initiatives are oriented toward
an exponential model of technological development in computer hardware. See, e.g.,
Department of Defense Scalable Software Initiative, supra note 38 (“There are clear trends
emerging today in the high performance computing market that the Department of Defense
recognizes and is positioning itself to exploit. These trends include an exponential growth
in the processing speed of microprocessor technology.”); Accelerated Strategic Computing
Initiative Program Plan (last modified Aug. 22, 1997) <http:// www.dote/osd.mil/ifte/
ASCLhtm> (“ASCI will stimulate the U.S. supercomputing industry to develop high
performance supercomputers with speeds and memeory capacities 1000s of times greater than
current models and 10s to 100s of times greater than anticipated based on current trends in
supercomputer development™).

The analysis in the paper does not require that developments in computer technology
strictly follow an exponential curve; it follows from the weaker assumption that processing
speed and memory capacity will increase by some (unknown) constant factor during the
patent term.

41. Given two algorithms, the algorithm with faster asymptotic running time will be
faster overall when the problem instance is sufficiently large. In this example, algorithm 4,
will be faster than algorithm A4, provided that n > 10.

FALL 1998 25

Hei nOnline -- 39 Jurinetrics 25 1998-1999

Chin

would be to allow the patentee to forbid the public from practicing an art (solving
these large problem instances) that the patentee will not enable at any time during
the patent term.

The same cannot be said*? for algorithm 4,. If it turns out that ¢ > 10, then
advances in computer hardware technology will bring algorithm A4, up to speed at
some point during the patent term. At that time, the patent disclosure will enable
the solution of the same set of problem instances that can be solved now with
algorithm 4,. If P-solving software based on 4, is found to infringe the patent, the
public will face a delay in practicing an art that the patent disclosure will only later
enable. However, such a broad reading of enablement falls well within established
doctrine.®

Ultimately, an asymptotic computational complexity standard embodies a
forecast about the progress of software’s complementary technology, that is, that
improvements in computer hardware will enable the art promised by constant-factor
improvements in software efficiency. As Robert Merges and Richard Nelson point
out, the decision as to how this technological forecast influences patent scope is
better made by the courts in interpreting congressional intent than by a patent
examiner.* In discerning Congress’s forecasts for computer technology, the best
available evidence suggests that Congress would adopt the standard assumption of
continuing exponential increases in processor speed and memory capacity.*’
Therefore, a reverse doctrine of equivalents based on an asymptotic computational

42. T am not arguing that algorithm 4, should be found to infringe the patent; 4, may
be found non-infringing on independent grounds. The point is that the efficiency defense
outlined in this paper should be available only to software that provides more than a constant
factor improvement in efficiency.

43. Enablement must be established only as of the date of filing. See, e.g., In re Hogan,
559 F.2d 595, 606 (C.C.P.A. 1977) (“To restrict [a patentee] to the . . . form disclosed . . .
would be a poor way to stimulate invention, and particularly to encourage its early
disclosure. To demand such restriction is merely to state a policy against broad protection
for pioneer inventions, a policy both shortsighted and unsound from the standpoint of
promoting progress in the useful arts, the constitutional purpose of the patent laws.”); see
also Phillips Petroleum Co. v. United States Steel Corp., 673 F. Supp. 1278, 1287, 1292 (D.
Del. 1987), aff"d, 865 F.2d 1247 (Fed. Cir. 1989) (sustaining patent claims covering forms
made possible by later technologies).

44. “The rule {that broad claims may be allowed] puts the burden of disproving
enablement on the examiner. The rationale is that any other rule would leave claim scope too
much in the hands of individual examiners and their technological forecasting abilities.
Narrowing is left to the courts in particular infringement suits.” Robert P. Merges & Richard
R. Nelson, On the Complex Economics of Patent Scope, 90 COLUM. L. REV. 839, 849
(1990).

45. See supra note 40 and accompanying text; see also National Defense Authorization
Act for Fiscal Year 1997, H.R. CONF. REP. NO. 104-724 (1996) (noting “exponential
improvement in commercial hardware and software”).

26 39 JURIMETRICS

Hei nOnline -- 39 Jurinetrics 26 1998-1999

Computational Complexity and the Scope of Software Patents

complexity standard would best satisfy the congressional purposes behind the
patentability of software.

IV. TOWARD A COHERENT DOCTRINE
FOR SOFTWARE PATENT SCOPE

My proposal locates the algorithmic efficiency inquiry in the infringement
determination, thereby minimizing the burden on Patent Office procedure. The
defendant in an infringement action should have the burden of analyzing the
algorithms underlying both pieces of software and demonstrating an asymptotic
improvement in efficiency. On the other hand, any uncertainty regarding the
complexity of the algorithm underlying the patented software should be resolved
against the patentee.*® Applicants for software patents should therefore take care
during prosecution to identify, unambiguously, the basic computational components
of their programs.*’ By declaring thata component is basic, a patentee concedes that
the design of the component is not novel, but obtains protection against a
programmer who tries to avoid infringement by improving the efficiency of the
component. Thus, the efficiency inquiry is focused on the claimed invention, and
not on routine elements of software design that may be streamlined with little effort.

For example, consider a database algorithm that calls a standard sorting
subroutine »n times, where » is the size of the database. Suppose that the sorting
subroutine requires the execution of 2»? instructions. A patentee would be well
advised to identify the sorting subroutine as a basic computational component.
Thus, a subsequent programmer could not avoid infringement by substituting the
three Hungarians’ asymptotically faster sorting subroutine*® for the one disclosed
in the patent, because such a substitution would still call the sorting subroutine n

46. This allocation of liability minimizes uncertainty regarding patent scope and is
consistent with the presumption of prosecution history estoppel with respect to claim
limitations. See Warner-Jenkinson Co. v. Hilton Davis Chemical Co., 117 S. Ct. 1040, 1049-
51 (1997) (ruling that the doctrine of equivalents allows the scope of a claim relating to a
chemical process to be extended beyond the claimed lower pH limit of 6.0, provided that the
patentee can overcome the presumption of prosecution history estoppel). The identification
of basic computational components would serve the “definitional and public-notice function
of the statutory claiming requirement.” /d. at 1049, As we have seen in Part I, every software
patent claim should be construed to imply a limitation on computational complexity so as
not to read on the universal algorithm.

47, Patentee’s identification of basic computational components serves as notice that
the remaining disclosure embodies the principle, or spirit, of the invention for purposes of
reverse equivalents analysis. See Graver Tank & Mfg. Co. v. Linde Air Products Co., 339
U.S. 605, 608-09 (1950) (*“[W]here a device is so far changed in principle from a patented
article that it performs the same or a similar function in a substantially different way, but
nevertheless falls within the literal words of the claim, the doctrine of equivalents may be
used to restrict the claim and defeat the patentee’s action for infringement”).

48. See, e.g., Ajtai et al., supra note 31.

FALL 1998 27

Hei nOnline -- 39 Jurinetrics 27 1998-1999

Chin

times. On the other hand, the Hungarians in applying for a patent on their sorting
algorithm would identify the comparison and exchange operations as their basic
steps, consistent with the spirit of their invention.*

Following this framework, the scope of a software patent would be informed
by the expert testimony of computer scientists who had performed a rigorous
analysis of the underlying algorithms. The result would be a coherent doctrine for
software patent scope. A patentee would be entitled to the problem-solving art she
or he had enabled, with an allowance for constant-factor inprovements in computer
hardware technology during the life of the patent. The vast academic literature on
efficiency in computer programming® would become relevant to the patent system
that has too long neglected the efforts of leading scientists to extend the reach of
computer technology.’' And, the software patent system would serve the purpose
for which it was intended: promoting progress in the useful arts.

49, See id.

50. See supra note 34.

51. Academic literature is underutilized. See, e.g., STOBBS, supra note 9, at 196-97
(describing Dr. Dobb s Journal, a popular magazine, as a leading source of articles “at the
cutting edge of software technology,” while failing to mention any academic literature on
computer science or software engineering). The heavy reliance during prosecution on
previously issued software patents is particularly troubling because this body of prior art
does not provide an accurate or accessible picture of the state of software technology. See
Thomas P. Burke, Sofiware Patent Protection: Debugging the Current System, 69 NOTRE
DAME L. REv. 1115, 1163 (1994) (“For the majority of software inventions, patent
prosecution was never sought. Where software patents have been awarded, the high-art of
disguising the software component has made these issued patents invisible to all but the most
skilled searchers.”); ¢f Marci A. Hamilton & Ted Sabety, Computer Science Concepts in
Copyright Cases: The Path to a Coherent Law, 10 HARV. J. L. & TECH. 239, 245 (1997)
(criticizing “[t]he legal world’s studious avoidance of computer science terminology” in
copyright cases).

28 39 JURIMETRICS

Hei nOnline -- 39 Jurinetrics 28 1998-1999

