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We use Karchmer and Wigderson’s recent characterization of circuit depth in terms of communication complexity to design 
shallow Boolean circuits for the counting functions. We show that the MOD, counting function on n arguments can be 

computed by Boolean networks which contain negations and binary OR- and AND-gates in depth c logrn, where c A 2.881. 

This is an improvement over the obvious depth upper bound of 3 logan. We can also design circuits for the MOD, and 

MOD,, functions having depth 3.475 logan and 4.930 logan, respectively. 
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1. Introduction 

The counting functions MOD&) : (0, l}” -+ 
(0, l} defined by MOD!:,?(x) = 1 iff x1 
+ . . . +x, = r mod k been fundamental in 
the study of Boolean function complexity [3,4,8]. 
A variety of methods have proved helpful in the 
construction of short formulas [2,9] and shallow 
circuits [6] for these functions. In this paper, we 
show that a recent characterization of circuit 
depth in terms of communication complexity [5] 
can be used to design efficient circuits for many of 
the counting functions. 

We will consider circuits over the basis U, = 
{ v , A , -}. The depth of a U,-circuit is the maxi- 
mal number of v and A gates in a path from an 
input gate to the output gate. A “naive” upper 
bound for the &-depth complexity of the count- 
ing functions is described by the following 

Proposition 1.1. D,(MOD!:!) G 11 + log,k] . 
ll~iwl. 
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Proof. The circuits can be designed recursively by 
using the identity 

MODi;; 

k-l 

= y ( 

MOD![;$‘)(xL) A MODj$/;“(x”)). 

Recent work by Paterson and Zwick has pro- 
duced the following global upper bound. 

Theorem 1.2 [7]. Dy(MOD!:>) G c log,n, where 
c < 5.07. 

2. A circuit design tool 

With every Boolean function f : (0, 1)” + 
(0, l}, let us associate mismatch bit problem 
MB(f) involving two players Pl and P2: Pl 
receives a string xi Efl(l); P2 receives a string 
x2 E f ‘(0); their task is to find a coordinate i 
such that x~,~ # x2,;. Let CC(MB(f)) denote the 
minimum number of bits they have to communi- 
cate in order for both to agree on such a coordi- 
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nate. (Unlike standard problems in communica- 
tion complexity, the task of the players here is to 
solve a search, rather than a decision, problem.) 
Then we have 

Theorem 2.1 [5]. For every function f : (0, 1)” + 
(0, l} we have Ds( f) = CC(MB( f )). 

The elegant proof of this result describes very 
natural constructions, so that explicit communica- 
tion protocols yield circuit designs, and vice versa. 
From a protocol for MB(f), we may build a 
circuit upward from the output gate, where each 
internal gate represents one bit of communication 
(and each path through the circuit represents a 
communication sequence). The details are found 
in [5]. 

3. The protocol for MOD, 

We give an economical communication proto- 
col for MB(MODi’J>). The basic idea is a divide- 
and-conquer argument. Our schemes uses mes- 
sages of different lengths, which correspond to 
subproblems of different sizes. 

Theorem 3.1. Let 4. denote the ith term in the 
Fibonacci series 1, 1, 2, 3, 5, 8, 13,. . . and let 
r E (0, 1, 2). Then MB(MOD,‘,T’) can be solved in 
communication 2i. 

Proof. We give an explicit communication proto- 
col. After Pl receives string xi E (MOD,‘:‘)-‘(l) 
and P2 receives string x2 E (MOD,‘,?‘)-“(O), the 
processors take turns communicating the weights 
(mod 3) of certain substrings of their inputs. (The 
weight of a binary string is the number of ones 
occurring in the string.) The goal is to find cor- 
responding substrings of length 1 for which the 
weights differ. 

More formally, we present the explicit protocol, 
which uses the integer variables MIN, MAX, 
TESTMIN, TESTMAX, OLDTESTMIN, 
OLDTESTMAX, LENGTH and SENDER, and 
the Boolean variable BALANCE. 
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Procedure INITIALIZE; 
begin 

MIN+-1; MAX+E;I; 
TESTMIN + 1 + 6-i; TESTMAX + E;I; 
LENGTH + i - 1; 
SENDER + 1; 
Pl finds the remainder r of 1:; i + F,_1 x~,~ upon 
division by 3 and transmits the value of r in 
binary to P2. P2 evaluates 

6 
BALANCE + c Xl,, 

i=l+E;_, 

E ; 
x2,, (mod 3). 

i=l+q_, 

end; 

Procedure SEND RESULTS; 
begin 

Player SENDER updates the Boolean variable 

OLDTESTMAX 

BALANCE + c xl,i 

i = OLDTESTMIN 

OLDTESTMAX 

= 
c x2,i 

i = OLDTESTMIN 

(mod 3) ; 

computes the remainder r of C~~~~!$&& 
xSENDER,i upon division by 3; and transmits a 
message to the other player as indicated in 
Table 1. 
(Note that this is a prefix code.) 

end; 

Table 1 

The MOD, code 

BALANCE r Message 

True 0 00 

True 1 01 

TN~ 2 10 

False 0 1100 

False 1 1101 

False 2 1110 



Volume 35, Number 6 INFORMATION PROCESSING LETTERS 15 September 1990 

Protocol FIND MISMATCH BIT; 
begin 

INITIALIZE; 
while LENGTH > 0 do 

begin 

(*) if BALANCE then 
begin 

MAX + TESTMIN - 1; 
LENGTH +- LENGTH - 1; 

end; 
else 

begin 
MIN + TESTMIN; 
LENGTH +- LENGTH - 2; 

end; 
OLDTESTMIN + TESTMIN; 
OLDTESTMAX + TESTMAX; 
TESTMIN + MIN + F,,,,,; 
TESTMAX +- MAX; 
SENDER + 3 - SENDER; 
SEND RESULTS; 

end; 
end (the index of the mismatch is MIN = 

MAX). 

Proof of correctness. Use the invariant 

I= 
i 

Y xl,i + Y x2,; . 
i=MIN i=MIN i 

Note that each time ( * ) is executed, both 
processors know the value of BALANCE, so that 
both processors are able to update MIN, MAX, 
TESTMIN and TESTMAX. 

Proof of complexity. After each execution of the 
while-do loop: 

(1) If BALANCE = True, then LENGTH is 
reduced by 1, and 2 bits of communication are 
used. 

(2) If BALANCE = False, then LENGTH is 
reduced by 2, and 4 bits of communication are 
used. 

Thus the protocol halts within 2i bits of com- 
munication. 

The asymptotic growth rate of the Fibonacci 
series yields the improved constant. 

Table 2 
Upper bounds 

Function 

MOD, 
MODs 

MOD,, 

Depth 

2.881 log,n 
3.415 log,n 

4.930 log,n 

Corollary 3.2. The counting functions MOD,‘,:’ may 
be computed by U,-circuits in depth c log,n + O(l), 
where c = 2/(log,((l + 6)/2)) = 2.881. 

4. Conclusion 

By designing the cheapest codes and applying 
the analogous protocols, the bounds of Section 1 
can be improved for the counting functions MOD, 
and MOD,, [l] (see Table 2). 

These bounds apply to any congruence class 
with the indicated modulus. 

In the case of MOD,, we are able to use an 
extremely economical coding scheme (using words 
of length 3 and 4) and we believe the MOD, 
bound is very close to optimal. 

Other bounds seem to contradict our intuition 
that MOD, is at least as hard as MOD, for 
primes p, q with p > q. Let B, denote the basis 
consisting of all the two-variable binary functions. 
The best upper bound for the formula size of 
MOD, over the basis B, is apparently 0(n3). 
Since there exist B,-formulas of size 0(n2.58) for 
the MOD, functions [9], we ask: 

Open question. Dq(MOD,) < D,(MOD,)? 
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